
DLint: Dynamically Checking
Bad Coding Practices in JavaScript

Liang Gong1, Michael Pradel2, Manu Sridharan3, and Koushik Sen1

1 EECS Department, University of California, Berkeley, USA
2 Department of Computer Science, TU Darmstadt, Germany, 3 Samsung Research America, USA

1 {gongliang13, ksen}@cs.berkeley.edu
2 michael@binaervarianz.de, 3 m.sridharan@samsung.com

ABSTRACT
JavaScript has become one of the most popular program-
ming languages, yet it is known for its suboptimal design. To
effectively use JavaScript despite its design flaws, developers
try to follow informal code quality rules that help avoid cor-
rectness, maintainability, performance, and security prob-
lems. Lightweight static analyses, implemented in “lint-like”
tools, are widely used to find violations of these rules, but
are of limited use because of the language’s dynamic nature.
This paper presents DLint, a dynamic analysis approach
to check code quality rules in JavaScript. DLint consists
of a generic framework and an extensible set of checkers
that each addresses a particular rule. We formally describe
and implement 28 checkers that address problems missed by
state-of-the-art static approaches. Applying the approach in
a comprehensive empirical study on over 200 popular web
sites shows that static and dynamic checking complement
each other. On average per web site, DLint detects 49
problems that are missed statically, including visible bugs
on the web sites of IKEA, Hilton, eBay, and CNBC.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics

General Terms
Metrics, software development, software quality assurance

Keywords
Code practice, DLint, dynamic analysis, metric

1. INTRODUCTION
JavaScript has become one of the most popular program-

ming languages. It powers various popular web sites, appli-
cations on mobile platforms, such as Firefox OS, Tizen OS,
iOS, and Android, as well as desktop platforms, such as Win-
dows 8 and Chrome OS. Despite its great success, JavaScript

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

is not often considered a “well-formed” language. Designed
and implemented in ten days,1 JavaScript suffers from many
unfortunate early design decisions that were preserved as
the language thrived to ensure backward compatibility. The
suboptimal design of JavaScript causes various pitfalls that
developers should avoid [15].

A popular approach to help developers avoid common pit-
falls are guidelines on which language features, programming
idioms, APIs, etc. to avoid, or how to use them correctly.
The developer community has learned such code quality rules
over time, and documents them informally, e.g., in books [15,
28] and company-internal guidelines.2 Following these rules
improves software quality by reducing bugs, increasing per-
formance, improving maintainability, and preventing secu-
rity vulnerabilities. Since remembering and following code
quality rules in JavaScript further burdens the use of an al-
ready complicated language, developers rely on automatic
techniques that identify rule violations. The state-of-the-art
approach for checking rules in JavaScript are lint-like static
checkers [32], such as JSLint [3], JSHint [2], ESLint [1], and
Closure Linter [4]. These static checkers are widely accepted
by developers and commonly used in industry.

Although static analysis is effective in finding particular
kinds of problems, it is limited by the need to approximate
possible runtime behavior. Most practical static checkers
for JavaScript [3, 2, 1, 4] and other languages [29, 11] take a
pragmatic view and favor a relatively low false positive rate
over soundness. As a result, these checkers may easily miss
violations of some rules and do not even attempt to check
rules that require runtime information.

Figure 1 shows two examples that illustrate the limitations
of existing static checkers. The first example (Figure 1a) is a
violation of the rule to not iterate over an array with a for-in
loop (Section 2.4.1 explains the rationale for this rule). Ex-
isting static checkers miss this violation because they cannot
precisely determine whether props is an array. The code
snippet is part of www.google.com/chrome, which includes
it from the Modernizr library. Because the code in Fig-
ure 1a misbehaves on Internet Explorer 7, the developers
have fixed the problem in a newer version of the library.3

The second example (Figure 1b) is a violation of the rule to
avoid the notorious eval and other functions that dynami-
cally evaluate code. The code creates an alias of eval, called
indirect, and calls the eval function through this alias.

1
http://brendaneich.com/2011/06/

new-javascript-engine-module-owner/
2
https://code.google.com/p/google-styleguide/

3
https://github.com/Modernizr/Modernizr/pull/1419

http://brendaneich.com/2011/06/new-javascript-engine-module-owner/
http://brendaneich.com/2011/06/new-javascript-engine-module-owner/
https://code.google.com/p/google-styleguide/
https://github.com/Modernizr/Modernizr/pull/1419

1 // From Modernizr 2.6.2
2 for (i in props) { // props is an array
3 prop = props[i];
4 before = mStyle.style[prop];
5 ...
6 }

(a) Violation of the rule to avoid using for-in loops
on an array. Found on www.google.com/chrome.

1 // From jQuery 2.1.0
2 globalEval: function(code) {
3 var script, indirect = eval; // alias of eval function
4 code = jQuery.trim(code);
5 if (code) {
6 if (code.indexOf("use strict") === 1) {
7 ...
8 } else {
9 indirect(code); // indirect call of eval

10 }
11 }
12 }

(b) Violation of the rule to avoid eval and its vari-
ants. Found on www.repl.it.

Figure 1: Examples that illustrate the limitations of
static checking of code quality rules.

We found this example on www.repl.it, which includes the
code from the jQuery library. Static checkers report direct
calls of eval but miss indirect calls because static call res-
olution is challenging in JavaScript. Aliasing eval is used
on various web sites [45] because it ensures that the code
passed to eval is evaluated in the global context.

Despite the wide adoption of code quality rules and the
limitations of static checking, there currently is no dynamic
lint-like approach for JavaScript. This paper presents DLint,
a dynamic analysis for finding violations of code quality
rules in JavaScript programs. Our approach consists of a
generic analysis framework and an extensible set of checkers
built on top of the framework. We present 28 checkers that
address common pitfalls related to inheritance, types, lan-
guage usage, API usage, and uncommon values. We describe
the checkers in a lightweight, declarative formalism, which
yields, to the best of our knowledge, the first comprehensive
description of dynamically checkable code quality rules for
JavaScript. Some of the rules, e.g., Figure 1a, cannot be
easily checked statically and are not addressed by existing
static checkers. Other rules, e.g., Figure 1b, are addressed
by existing static checkers, and DLint complements them
through dynamic analysis.

Having DLint and the existing static checkers raises the
following research questions, which compare the effective-
ness of dynamic and static analyses:

• RQ1: How many violations of code quality rules are
detected by DLint but missed by static checkers?

• RQ2: How many rule violations found by DLint are
missed statically even though static checkers address
the violated rule?

In addition, we also address this question:

• RQ3: How does the number of violations of code qual-
ity rules relate to the popularity of a web site?

To answer these questions, we perform an empirical study
on over 200 of the world’s most popular web sites. We apply
DLint and the most widely adopted existing static checker,

Figure 2: Bug found by DLint on the Hilton and
CNBC web sites.

JSHint, to these sites and compare the problems they re-
port with each other. In total, the study involves over 4
million lines of JavaScript code and 178 million covered run-
time operations. The study shows that DLint identifies 53
rule violations per web site, on average, and that 49 of these
warnings are missed by static checking (RQ1). Furthermore,
we find that complementing existing static checkers with dy-
namic variants of these checkers reveals at least 10.1% addi-
tional problems that would be missed otherwise (RQ2). We
conclude from these results that static and dynamic check-
ing complement each other, and that pursuing the DLint
approach is worthwhile.

Even though this work is not primarily about bug finding
(the rules we consider address a more diverse spectrum of
code quality problems), we stumbled across 19 clear bugs
in popular web sites when inspecting a subset of DLint’s
warnings. These bugs lead to incorrectly displayed web sites
and are easily noticeable by users. For example, DLint de-
tects “undefined” hotel rates on www.hilton.com and “NaN”
values on www.cnbc.com (Figure 2). The approach also suc-
cessfully identifies the motivating examples in Figure 1. All
these examples are missed by static checking.

We envision DLint to be used as an in-house testing
technique that complements static checkers in ensuring code
quality. That is, our purpose is not to replace static lint-like
tools but to provide an automatic approach for identifying
problems missed by these tools. Our empirical results show
that dynamic and static checking can each identify a unique
set of violations of common code quality rules.

In summary, this paper contributes the following:

• We present the first dynamic analysis to find violations
of code quality rules in JavaScript.

• We gather and formally describe 28 JavaScript quality
rules that cannot be easily checked with static analysis.
• We present an extensive empirical study on over 200

popular web sites that systematically compares the ef-
fectiveness of static and dynamic analyses in finding
code quality problems. The study shows that both
approaches are complementary, and it quantifies their
respective benefits.

• Our implementation of DLint can be easily extended
with additional checkers, providing the basis for a prac-
tical tool that fills an unoccupied spot in the JavaScript
tool landscape. DLint is available as open source:
https://github.com/Berkeley-Correctness-Group/DLint

2. APPROACH
This section presents DLint, a dynamic analysis to de-

tect violations of code quality rules. DLint consists of a

https://github.com/Berkeley-Correctness-Group/DLint

generic framework and a set of checkers that build upon the
framework. Each checker addresses a rule and searches for
violations of it. We specify when such a violation occurs
in a declarative way through predicates over runtime events
(Section 2.1). DLint currently contains 28 checkers that
address rules related to inheritance (Section 2.2), types and
type errors (Section 2.3), misuse of the JavaScript language
(Section 2.4), misuse of an API (Section 2.5), and uncom-
mon values (Section 2.6). The presented checkers reveal rule
violations in various popular web sites (Section 4).

2.1 Rules, Events, and Runtime Patterns
The goal of this work is to detect violations of commonly

accepted rules that the developer community has learned
over time.

Definition 1 (Code quality rule)
A code quality rule is an informal description of a pattern of
code or execution behavior that should be avoided or that
should be used in a particular way. Following a code quality
rule contributes to, e.g., increased correctness, maintainabil-
ity, code readability, performance, or security.

We have studied 31 rules checked by JSLint [3], more than
150 rules checked by JSHint [2], and around 70 rules ex-
plained in popular guidelines [15, 28]. We find that existing
static checkers may miss violations of a significant number
of rules due to limitations of static analysis. Motivated by
these findings, our work complements existing static check-
ers by providing a dynamic approach for checking code qual-
ity rules. To formally specify when a rule violation occurs,
we describe violations in terms of predicates over events that
happen during an execution.

Definition 2 (Runtime event predicate)
A runtime event predicate describes a set of runtime events
with particular properties:
• lit(val) matches a literal, where the literal value is val.

• varRead(name, val) matches a variable read, where
the variable is called name and has value val.

• call(base, f, args, ret, isConstr) matches a function call,
where the base object is base, the called function is f ,
the arguments passed to the function are args, the
return value of the call is ret, and where isConstr
specifies whether the call is a constructor call.

• propRead(base, name, val) matches a property read,
where the base object is base, the property is called
name, and the value of the property is val.

• propWrite(base, name, val) matches a property write,
where the base object is base, the property is called
name, and the value written to the property is val.

• unOp(op, val, res) matches a unary operation, where
the operator is op, the input value is val, and the result
value is res.

• binOp(op, left, right, res) matches a binary operation,
where the operator is op, the left and right operands
are left and right, respectively, and the result value is
res.

• cond(val) matches a conditional, where val is the value
that is evaluated as a conditional.

• forIn(val) matches a for-in loop that iterates over the
object val.

A predicate either constrains the value of a parameter
or specifies with ∗ that the parameter can have any value.
For example, varRead(“foo”, ∗) is a runtime predicate that
matches any read of a variable called “foo”, independent of
the variable’s value. The above list focuses on the events and
parameters required for the runtime patterns presented in
this paper. Our implementation supports additional events
and parameters to enable extending DLint with additional
checkers.

Based on runtime event predicates, DLint allows for spec-
ifying when a program violates a code quality rule during the
execution. We call such a specification a runtime pattern
and distinguish between two kinds of patterns:

Definition 3 (Single-event runtime pattern)
A single-event runtime pattern consists of one or more event
predicates over a single runtime event, where each predicate
is a sufficient condition for violating a code quality rule.

For example, varRead(“foo”, ∗) is a single-event runtime
patterns that addressed the trivial rule that no variable
named “foo” should ever be read.

Definition 4 (Multi-event runtime pattern)
A multi-event runtime pattern consists of event predicates
over two or more runtime events, if they occur together, are
a sufficient condition for violating a code quality rule.

For example, varRead(“foo”, ∗) ∧ varWrite(“foo”, ∗)
is a multi-event runtime pattern that addresses the, again
trivial, rule to not both read and write a variable named
“foo” during an execution.

Because single-event runtime patterns match as soon as
a particular event occurs, they can be implemented by a
stateless dynamic analysis. In contrast, multi-event runtime
patterns match only if two or more related events occur.
Therefore, they require a stateful dynamic analysis.

The remainder of this section presents some of the code
quality rules and their corresponding runtime patterns we
address in DLint. Each rule is addressed by a checker that
identifies occurrences of the runtime pattern. To the best
of our knowledge, we provide the first comprehensive formal
description of dynamic checks that address otherwise infor-
mally specified rules. Due to limited space, we discuss only
a subset of all currently implemented checkers. The full list
of checkers is available on our project homepage.

Abbreviations: isFct(x), isObject(x), isPrim(x), and
isString(x) are true if x is a function, an object, a primitive
value, and a string, respectively. isArray(x), isCSSObj(x),
isF loat(x), isNumeric(x), isBooleanObj(x), isRegExp(x)
are true if x is an array, a CSS object, a floating point
value, a value that coerces into a number, a Boolean object,
and a regular expression, respectively. relOrEqOp refers
to a relational operator or an equality operator. Finally,
argumentProps and arrayProps refer to the set of proper-
ties of the built-in arguments variable and the set of prop-
erties in Array.prototype, respectively.

2.2 Problems Related to Inheritance
JavaScript’s implementation of prototype-based inheritance

not only offers great flexibility to developers but also pro-
vides various pitfalls that developers should avoid. To ad-
dress some of these pitfalls, Table 2.1 shows DLint checkers
that target inheritance-related rules. The following explains
two of these checkers in detail.

Table 1: Inheritance-related code quality rules and runtime patterns (all are single-event patterns).

ID Name Code quality rule Runtime event predicate(s)

I1 Enumerable-
ObjProps

Avoid adding enumerable properties
to Object. Doing so affects every
for-in loop.

propWrite(Object, ∗, ∗)
call(Object, f, args, ∗, ∗) | f.name = “defineProperty” ∧
args.length = 3 ∧ args[2].enumerable = true

I2 Inconsistent-
Constructor

x.constructor should yield the
function that has created x.

propRead(base, constructor, val) | val 6= function that has created base

I3 NonObject-
Prototype

The prototype of an object must be an
object.

propWrite(∗, name, val) | name ∈ {“prototype”, “ proto ”} ∧
!isObject(val)

I4 Overwrite-
Prototype

Avoid overwriting an existing
prototype, as it may break the
assumptions of other code.

propWrite(base, name, ∗) | name ∈ {“prototype”, “ proto ”} ∧
base.name is a user-defined prototype before the write

I5 Shadow-
ProtoProp

Avoid shadowing a prototype property
with an object property.

propWrite(base, name, val) | val is defined in base′s prototype chain ∧
!isFct(val) ∧ (base, name) /∈ shadowingAllowed

Table 2: Code quality rules and runtime patterns related to type errors.

ID Name Code quality rule Runtime event predicate(s)

Single-event patterns:

T1 FunctionVs-
Prim

Avoid comparing a function with a
primitive.

binOp(relOrEqOp, left, right, ∗) | isFct(left) ∧ isPrim(right)
binOp(relOrEqOp, left, right, ∗) | isPrim(left) ∧ isFct(right)

T2 StringAnd-
Undefined

Avoid concatenating a string and
undefined, which leads to a string
containing “undefined”.

binOp(+, left, right, res) | (left = “undefined” ∨ right = “undefined”) ∧
isString(res)

T3 ToString toString must return a string. call(∗, f, ∗, ret, ∗) | f.name = “toString” ∧ !isString(ret)

T4 Undefined-
Prop

Avoid accessing the “undefined”
property.

propWrite(∗, “undefined”, ∗)
propRead(∗, “undefined”, ∗)

Multi-event patterns:

T5 Constructor-
Functions

Avoid using a function both as
constructor and as non-constructor.

call(∗, f, ∗, ∗, false) ∧ call(∗, f, ∗, ∗, true)

T6 TooMany-
Arguments

Pass at most as many arguments to a
function as it expects.

call(∗, f, args, ∗, ∗) | |args| > f.length ∧
@ varRead(arguments, ∗) during the call

2.2.1 Inconsistent Constructor
Each object has a constructor property that is sup-

posed to return the constructor that has created the ob-
ject. Unfortunately, JavaScript does not enforce that this
property returns the constructor, and developers may ac-
cidentally set this property to arbitrary values. The prob-
lem is compounded by the fact that all objects inherit a
constructor property from their prototype.

For example, consider the following code, which mimics
class-like inheritance in an incorrect way:

1 function Super() {} // superclass constructor
2 function Sub() { // subclass constructor
3 Super.call(this);
4 }
5 Sub.prototype = Object.create(Super.prototype);
6 // Sub.prototype.constructor = Sub; // should do this
7 var s = new Sub();
8 console.log(s.constructor); // "Function: Super"

Because the code does not assign the correct constructor
function to Sub’s prototype, accessing the constructor of an
instance of Sub returns Super.

To detect such inconsistent constructors, DLint checks
for each read of the constructor property whether the
property’s value is the base object’s constructor function
(Checker I2 in Table 2.1). To access the function that has
created an object, our implementation stores this function
in a special property of every object created with the new
keyword.

2.2.2 Shadowing Prototype Properties
Prototype objects can have properties, which are typically

used to store data shared by all instances of a prototype. De-

velopers of Java-like languages may think of prototype prop-
erties as static, i.e., class-level, fields. In such languages, it
is forbidden to have an instance field with the same name
as an existing static field. In contrast, JavaScript does not
warn developers when an object property shadows a proto-
type property. However, shadowing is discouraged because
developers may get easily confused about which property
they are accessing.

To identify shadowed prototype properties, Checker I5 in
Table 2.1 warns about property writes where the property
is already defined in the base object’s prototype chain. For
example, the following code raises a warning:

1 function C() {}; C.prototype.x = 3;
2 var obj = new C(); obj.x = 5;
3 console.log(obj.x); // "5"

There are two common and harmless kinds of violations of
this rule in client-side JavaScript code: changing prototype
properties of DOM objects (e.g., innerHTML), and overrid-
ing of functions inherited from the prototype object. To
avoid overwhelming developers with unnecessary warnings,
the checker excludes a set shadowingAllowed of such DOM
properties and properties that refer to functions.

2.3 Problems Related to Types
JavaScript does not have compile time type checking and

is loosely typed at runtime. As a result, various problems
that would lead to type errors in other languages may re-
main unnoticed. Table 2.1 shows DLint checkers that warn
about such problems by checking type-related rules. Two of
these checkers require to check for occurrences of multi-event

Table 3: Code quality rules and runtime patterns related to language misuse (all are single-event patterns).

ID Name Code quality rule Runtime event predicate(s)

L1 Arguments-
Variable

Avoid accessing non-existing
properties of arguments.

propRead(arguments, name, ∗) | name /∈ argumentProps
propWrite(arguments, ∗, ∗)
call(arguments, f, ∗, ∗, ∗) | f.name = “concat”

L2 ForInArray Avoid for-in loops over arrays, both
for efficiency and because it may
include properties of
Array.prototype.

forIn(val) | isArray(val)

L3 GlobalThis Avoid referring to this when it equals
to global.

varRead(this, global)

L4 Literals Use literals instead of new Object()
and new Array()1

call(builtin, f, args, ∗, ∗) | (f = Array ∨ f = Object) ∧ args.length = 0

L5 NonNumeric-
ArrayProp

Avoid storing non-numeric properties
in an array.

(propWrite(base, name, ∗) ∨ propRead(base, name, ∗)) | isArray(base) ∧
!isNumeric(name) ∧ name /∈ arrayProps)

L6 PropOf-
Primitive

Avoid setting properties of primitives,
which has no effect.

propWrite(base, ∗, ∗) | isPrim(base)

1 Note that it is legitimate for performance reasons to call these constructors with arguments [24].

runtime patterns. We explain two type-related checkers in
the following.

2.3.1 Accessing the “undefined” Property
An object property name in JavaScript can be any valid

JavaScript string. As developers frequently store property
names in variables or in other properties, this permissive-
ness can lead to surprising behavior when a property name
coerces to “undefined”. For example, consider the following
code:

1 var x; // undefined
2 var y = {}; y[x] = 23; // results in { undefined: 23 }

The undefined variable x is implicitly converted to the string
“undefined”. Developers should avoid accessing the “unde-
fined” property because it may result from using an unde-
fined value in the square bracket notation for property ac-
cess. Checker T4 checks for property reads and writes where
the property name equals “undefined”.

2.3.2 Concatenate undefined and a String
JavaScript allows programs to combine values of arbitrary

types in binary operations, such as + and -. If differently
typed operands are combined, the JavaScript engine implic-
itly converts one or both operands to another type according
to intricate rules [5]. Even though such type coercions may
often match the intent of the programmer [42], they can also
lead to hard to detect, incorrect behavior.

A rare and almost always unintended type coercion hap-
pens when a program combines an uninitialized variable and
a string with the + operator. In this case, JavaScript coerces
undefined to the string “undefined” and concatenates the
two strings.

2.4 Problems Related to Language Misuse
Some of JavaScript’s language features are commonly mis-

understood by developers, leading to subtle bugs, perfor-
mance bottlenecks, and unnecessarily hard to read code.
DLint checks several rules related to language misuse (Ta-
ble 2.2.2), three of which we explain in the following.

2.4.1 For-in Loops over Arrays
JavaScript provides different kinds of loops, including the

for-in loop, which iterates over the properties of an object.
For-in loops are useful in some contexts, but developers are
discouraged from using for-in loops to iterate over arrays.

The rationale for this rule is manifold. For illustration, con-
sider the following example, which is supposed to print “66”:

1 var sum = 0, x, array = [11, 22, 33];
2 for (x in array) {
3 sum += array[x];
4 }
5 console.log(sum);

First, because for-in considers all properties of an object, in-
cluding properties inherited from an object’s prototype, the
iteration may accidentally include enumerable properties of
Array.prototype. E.g., suppose a third-party library ex-
pands arrays by adding a method: Array.prototype.m
= ...;. In this case, the example prints “66function
() {...}”. Some browsers, e.g., Internet Explorer 7, mis-
takenly iterate over all built-in methods of arrays, causing
unexpected behavior even if Array.prototype is not ex-
plicitly expanded. Second, some developers may incorrectly
assume that a for-in loop over an array iterates through
the array’s elements, similar to, e.g., the for-each construct
in Java. In this case, a developer would replace the loop
body from above with sum += x, which leads to the un-
expected output “0012”. Finally, for-in loops over arrays
should be avoided because they are significantly slower than
traditional for loops.4

Checker L2 helps avoiding these problems by warning about
for-in loops that iterate over arrays. Given DLint’s in-
frastructure, this checker boils down to a simple check of
whether the value provided to a for-in loop is an array.

2.4.2 Properties of Primitives
When a program tries to access properties or call a method

of one of the primitive types boolean, number, or string,
JavaScript implicitly converts the primitive value into its
corresponding wrapper object. For example:

1 var fact = 42;
2 fact.isTheAnswer = true;

Unfortunately, setting a property of a primitive does not
have the expected effect because the property is attached
to a wrapper object that is immediately discarded after-
wards. In the example, the second statement does not mod-
ify fact but a temporarily created instance of Number, and
fact.isTheAnswer yields undefined afterwards.

4E.g., V8 refuses to optimize methods that include for-in
loops over arrays.

Table 4: Code quality rules and runtime patterns related to incorrect API usage (single-event patterns).

ID Name Code quality rule Runtime event predicate(s)

A1 Double-
Evaluation

Avoid eval and other ways of runtime
code injection.

call(builtin, eval, ∗, ∗, ∗)
call(builtin, Function, ∗, ∗, ∗)
call(builtin, setT imeout, args, ∗, ∗) | isString(args[0])
call(builtin, setInterval, args, ∗, ∗) | isString(args[0])
call(document, f, ∗, ∗, ∗) | f.name = “write”

A2 EmptyChar-
Class

Avoid using an empty character class,
[], in regular expressions, as it does
not match anything.

lit(val) | isRegExp(val) ∧ val contains “[]”
call(builtin,RegExp, args, ∗, ∗) | isString(args[0]) ∧ args[0] contains “[]”

A3 FunctionTo-
String

Avoid calling Function.toString(),
whose behavior is platform-dependent.

call(base, f, ∗, ∗, ∗) | f.name = “toString” ∧ isFct(base)

A4 FutileWrite Writing a property should change the
property’s value.

propWrite(base, name, val) | base[name] 6= val after the write

A5 MissingRadix Pass a radix parameter to parseInt,
whose behavior is platform-dependent
otherwise.

call(builtin, parseInt, args, ∗, ∗) | args.length = 1

A6 SpacesIn-
Regexp

Prefer “ {N}”2 over multiple
consecutive empty spaces in regular
expressions for readability.

lit(val) | isRegExp(val) ∧ val contains “ ”
call(builtin,RegExp, args, ∗, ∗) | args[0] contains “ ”

A7 StyleMisuse CSS objects are not strings and should
not be used as if they were.

binOp(eqOp, left, right) | isCSSObj(left) ∧ isString(right)
binOp(eqOp, left, right) | isString(left) ∧ isCSSObj(right)

A8 Wrapped-
Primitives

Beware that all wrapped primitives
coerce to true.

cond(val) | isBooleanObj(val) ∧ val.valueOf() = false

Developers can prevent such surprises by following the
rule that setting properties of primitives should be avoided.
Checker L6 checks for violations of this rule by warning
about every property write event where the base value is
a primitive.

2.4.3 Unnecessary Reference to this

The semantics of this in JavaScript differ from other
languages and often confuse developers. When accessing
this in the context of a function, the value depends on how
the function is called. In the global context, i.e., outside of
any function, this refers to the global object. Because the
global object is accessible without any prefix in the global
context, there is no need to refer to this, and a program
that accesses this in the global context is likely to confuse
the semantics of this. Checker L3 warns about accesses
of this in the global context by checking whether reading
this yields the global object.

2.5 Problems Related to API Misuse
As most APIs, JavaScript’s built-in API and the DOM

API provide various opportunities for misusing the provided
functionality. Motivated by commonly observed mistakes,
several DLint checkers address rules related to incorrect,
unsafe, or otherwise discouraged API usages (Table 2.4).
The following explains three checkers in detail.

2.5.1 Coercion of Wrapped Primitives
The built-in constructor functions Boolean, Number, and

String enable developers to wrap primitive values into ob-
jects. However, because objects always coerce to true in
conditionals, such wrapping may lead to surprising behav-
ior when the wrapped value coerces to false. For example,
consider the following example, where the code prints “true”
in the second branch, even though b is false:

1 var b = false;
2 if (b) console.log("true");
3 if (new Boolean(b)) console.log("true");

To avoid such surprises, developers should avoid evalu-
ating wrapped boolean in conditionals. Checker A8 warns

about code where a Boolean object appears in a conditional
and where the value wrapped by the object is false.

2.5.2 Futile Writes of Properties
Some built-in JavaScript objects allow developers to write

a particular property, but the write operation has no effect
at runtime. For example, typed arrays5 simply ignore all
out-of-bounds writes. Even though such futile writes are
syntactically correct, they are likely to be unintended and,
even worse, difficult to detect because JavaScript silently
executes them.

Checker A4 addresses futile writes by warning about prop-
erty write operations where, after the write, the base object’s
property is different from the value assigned to the property.
In particular, this check reveals writes where the property
remains unchanged. An alternative way to check for futile
writes is to explicitly search for writes to properties that are
known to not have any effect. The advantage of the run-
time predicate we use is to provide a generic checker that
detects all futile writes without requiring an explicit list of
properties.

2.5.3 Treating style as a String
Each DOM element has a style attribute that deter-

mines its visual appearance. The style attribute is a string
in HTML, but the style property of an HTML DOM ele-
ment is an object in JavaScript. For example, the JavaScript
DOM object that correspond to the HTML markup <div
style=’top:10px;’></div> is a CSS object with a prop-
erty named top. The mismatch between JavaScript and
HTML types sometimes causes confusion, e.g., leading to
JavaScript code that retrieves the style property and com-
pares it to a string. Checker A7 identifies misuses of the
style property by warning about comparison operations,
e.g., === or !==, where one operand is a CSS object and
where the other operand is a string.

5Typed arrays are array-like objects that provide a mech-
anism for accessing raw binary data stored in contiguous
memory space.

Table 5: Code quality rules and runtime patterns related to uncommon values (all are single-event patterns).

ID Name Code quality rule Runtime event predicate(s)

V1 Float-
Equality

Avoid checking the equality of similar
floating point numbers, as it may lead
to surprises due to rounding2.

binOp(eqOp, left, right, ∗) | isF loat(left) ∧ isF loat(right) ∧
|left− right| < ε

V2 NaN Avoid producing NaN (not a number). unOp(∗, val, NaN) | val 6= NaN
binOp(∗, left, right,NaN) | left 6= NaN ∧ right 6= NaN
call(∗, ∗, args,NaN, ∗) | NaN /∈ args

V3 Overflow-
Underflow

Avoid numeric overflow and underflow. unOp(∗, val,∞) | val 6=∞
binOp(∗, left, right,∞) | left 6=∞ ∧ right 6=∞
call(builtin, ∗, args,∞, ∗) | ∞ /∈ args

2 It is a notorious fact that the expression 0.1 + 0.2 === 0.3 returns false in JavaScript.

2.6 Problems Related to Uncommon Values
The final group of checkers addresses rules related to un-

common values that often occur unintendedly (Table 2.5.1).
We explain one of them in detail.

2.6.1 Not a Number
The NaN (not a number) value may result from exceptional

arithmetic operations and is often a sign of unexpected be-
havior. In JavaScript, NaN results not only from operations
that produce NaN in other languages, such as division by
zero, but also as the result of unusual type coercions. For
example, applying an arithmetic operation to a non-number,
such as 23-"five", may yield NaN. Since generating NaN
does not raise an exception or any other kind of warning in
JavaScript, NaN-related problems can be subtle to identify
and hard to diagnose.

In most programs, developers want to follow the rule that
suggests to avoid occurrences of NaN. Checker V2 warns
about violations of this rule by identifying operations that
take non-NaN values as inputs and that produce a NaN value.
The checker considers unary and binary operations as well
as function calls.

3. IMPLEMENTATION
We implement DLint as an automated analysis tool for

JavaScript-based web applications and node.js applications.
The system has multiple steps. First, DLint opens a web
site in Firefox, which we modify so that it intercepts all
JavaScript code before executing it, including code dynam-
ically evaluated through eval, Function, setInterval,
setTimeout, and document.write. Second, DLint in-
struments the intercepted code to add instructions that per-
form the checks. This part of DLint builds upon the dy-
namic analysis framework Jalangi [49]. Third, while the
browser loads and renders the web site, the instrumented
code is executed and DLint observes its runtime events. If
an event or a sequence of events matches a runtime pattern,
DLint records this violation along with additional diagnosis
information. Fourth, after completely loading the web site,
DLint automatically triggers events associated with visible
DOM elements, e.g., by hovering the mouse over an element.
This part of our implementation builds upon Selenium.6 We
envision this step to be complemented by a UI-level regres-
sion test suite, by manual testing, or by a more sophisticated
automatic UI testing approach [6, 13, 47]. Finally, DLint
gathers the warnings from all checkers and reports them to
the developer. Our prototype implementation has around
12,000 lines of JavaScript, Java and Bash code, excluding

6
http://www.seleniumhq.org/

projects we build upon. The implementation is available as
open-source.

A key advantage of DLint is that the framework can easily
be extended with additional dynamic checkers. Each checker
registers for particular runtime events and gets called by
the framework whenever these events occur. The frame-
work dispatches events to an arbitrary number of check-
ers and hides the complexity of instrumentation and dis-
patching. For example, consider the execution of a.f=b.g.
DLint instruments this statement so that the framework
dispatches the following four events, in addition to executing
the original code: varRead(“b”, x1), propRead(x1, “g”, x2),
varRead(“a”, x3), propWrite(x3, “f”, x2), where xi refer to
runtime values.

4. EVALUATION
We evaluate DLint through an empirical study on over

200 web sites. Our main question is whether dynamically
checking for violations of code quality rules is worthwhile.
Section 4.2 addresses this question by comparing DLint to a
widely used static code quality checker. Section 4.3 explores
the relationship between code quality and the popularity
of a web site. We evaluate the performance of DLint in
Section 4.4. Section 4.5 presents examples of problems that
DLint reveals. Finally, Section 4.6 discusses threats to the
validity of our conclusions.

4.1 Experimental Setup
The URLs we analyze come from two sources. First, we

analyze the 50 most popular web sites, as ranked by Alexa.
Second, to include popular web sites that are not landing
pages, we search Google for trending topics mined from
Facebook and include the URLs of the top ranked results.
In total, the analyzed web sites contain 4 million lines of
JavaScript code. Since many sites ship minified source code,
where an entire script may be printed on a single line, we
pass code to js-beautify7 before measuring the number of
lines of code. We fully automatically analyze each URL as
described in Section 3.

To compare DLint to static checking, we analyze all code
shipped by a web site with JSHint. To the best of our knowl-
edge, JSHint is currently the most comprehensive and widely
used static, lint-like checker for JavaScript.8 We compare
the problems reported by DLint and JSHint through an
AST-based analysis that compares the reported code loca-
tions and the kinds of warnings.

7
http://jsbeautifier.org/

8JSHint checks more code quality rules than JSLint. ES-
Lint is a re-implementation of JSLint to support pluggable
checkers.

http://www.seleniumhq.org/
http://jsbeautifier.org/

0% 20% 40% 60% 80% 100%
% of warnings on each site

W
eb

si
te

s JSHint Unique
Common
DLint Unique

(a) Warn. # per site.

0

1

2

3

4

I5 T6 L3 T5 A2V2 L4 A5 T1 L2 L1 A6A8A3 T2 A4 I1 I4 V3 L5 I2 T4 L6 A7 T3

Lo
ga

rit
hm

ic
 a

vg
. #

w

ar
n.

 /
 si

te
 (b

as
e

2)

DLint checkers

checker shares no
warning with JSHint
checker shares warnings
with JSHint

8

4

2

1

0

(b) Avg. warn. # from DLint per site.

0% 20% 40% 60% 80%
Coverage rate

W
eb

si
te

s

0 50

DLint tim

W
eb

si
te

s

(c) Coverage rate.

0 50 100 150 200 250
Time of Dlint (sec)

W
eb

si
te

s

Instrumentation Time
Execution Time
Analysis Time

(d) Running time.

Figure 3: Warnings from JSHint and DLint.

4.2 Dynamic versus Static Checking
DLint checks 28 rules, of which 5 have corresponding

JSHint checkers. JSHint checks 150 rules, of which 9 have
corresponding DLint checkers. There is no one-to-one map-
ping of the overlapping checkers. For example, DLint’s
“DoubleEvaluation” checker (Checker A1 in Table 2.4) cor-
responds to several JSHint checkers that search for calls of
eval and eval-like functions. In total over all 200 web sites
analyzed, DLint reports 9,018 warnings from 27 checkers,
and JSHint reports about 580k warnings from 91 checkers.
That is, JSHint warns about significantly more code quality
problems than DLint. Most of them are syntactical prob-
lems, such as missing semicolons, and therefore are out of
the scope of a dynamic analysis. For a fair comparison, we
focus on JSHint checkers that have a corresponding DLint
checker.

To further compare the state-of-the-art static checker and
DLint, we design research Questions RQ1 and RQ2 and an-
swer those questions through empirical studies. RQ1 stud-
ies the number of additional violations detected by dynamic
analysis in general. RQ2 studies the number of violations
that are meant to be detected by static checkers but are
actually missed by JSHint in practice.

RQ1: How many violations of code quality rules are
detected by DLint but missed by static checkers?
Figure 3a shows for each analyzed web site the percentage
of warnings reported only by JSHint, by both DLint and
JSHint, and only by DLint. Each horizontal line repre-
sents the distribution of warnings for a particular web site.
The results show that DLint identifies warnings missed by
JSHint for most web sites and that both checkers identify a
common set of problems.

To better understand which DLint checkers contribute
warnings that are missed by JSHint, Figure 3b shows the
number of warnings reported by all DLint checkers, on av-
erage per web site. The black bars are for checkers that re-
port problems that are completely missed by JSHint. These
checkers address rules that cannot be easily checked through
static analysis. The total number of DLint warnings per site
ranges from 1 to 306. On average per site, DLint generates
53 warnings, of which 49 are problems that JSHint misses.

In both RQ1 and RQ2, warnings from JSHint and DLint
are matched based on their reported code locations. For
the same code practice violation, there are sometimes slight
differences (different column offset) between the locations
reported by the two systems. To improve the matching pre-
cision, we first approximately match warnings reported on
the same lines; then predefined rules are applied to prune
impossible warning matchings (e.g., eval warnings from

JSHint can only match warnings from checker Checker A1
in DLint); finally, we manually inspect all matches to check
their validity.

RQ2: How many rule violations found by DLint are
missed statically even though static checkers address
the violated rule?
One of the motivations of this work is that a pragmatic
static analysis may miss problems even though it searches
for them. In RQ2, we focus on DLint checkers that ad-
dress rules that are also checked by JSHint and measure
how many problems are missed by JSHint but revealed by
DLint. Figure 4a (4b) shows the number of warnings de-
tected by JSHint (DLint) checkers that address a rule also
checked by DLint (JSHint). The figure shows that JSHint
and DLint are complementary. For example, JSHint and
DLint both detect 205 calls of Function, which is one
form of calling the evil eval. JSHint additionally detects
359 calls that are missed by DLint because the call site
is not reached at runtime. DLint additionally detects 181
calls of eval and eval-like functions, which includes calls
of Function.

Considering all checkers shown in Figure 4, DLint reports
10.1% additional warnings that are missed by JSHint even
though JSHint checks for the rule. Manual inspection of
these problems shows that they are due to code that is hard
or impossible to analyze for a pragmatic static checker, e.g.,
code that assigns Function to another variable and calls it
through this alias.

We conclude from the results for RQ1 and RQ2 that dynam-
ically checking for violations of code quality rules is worth-
while. DLint complements existing static checkers by re-
vealing problems that are missed statically and by finding
violations of rules that cannot be easily checked through
static analysis.

Coverage: Dynamic analysis is inherently limited to the
parts of a program that are covered during an execution. To
understand the impact of this limitation, we compute cover-
age as the number of basic operations that are executed at
least once divided by the total number of basic operations.
For example, if(b) a=1 consists of three basic operations:
read b, test whether b evaluates to true, and write a. If
during the execution, b always evaluated to false, then
the coverage rate would be 2/3 = 66.7%. Figure 3c shows
the coverage achieved during the executions that DLint an-
alyzes. Each line represents the coverage rate of one web
site. Overall, coverage is relatively low for most web sites,
suggesting that, given a richer test suite, DLint could reveal
additional rule violations.

74
359

191
416

1401
62
202
2335
4933

79
205

62
125

167
6
15
26
8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Do not use Number, Boolean, String as a constructor.
The Function constructor is a form of eval.
The object literal notation {} is preferable.
The array literal notation [] is preferable.

document.write can be a form of eval.
Do not override built-in variables.

Implied eval (string instead of function as argument).
eval can be harmful.

Missing 'new' prefix when invoking a constructor.

Fount by JSHint Only Common with DLint

A8
L4

A1
L1

T5

(a) Warnings from JSHint that have a matching warning from DLint.

2
5
167

6
15
26
8

0%100%

31

77

181

74

833

79

187

413

6

8

0% 20% 40% 60% 80% 100%

WrappedPrimitives

Literals

DoubleEvaluation

ArgumentsVariable

ConstructorFunctions

A8
L4

A1
L1

T5

Found by Dlint Only Common with JSHint

(b) Warnings from DLint that have a matching warning

from JSHint.

Figure 4: Overlap of warnings reported by DLint and JSHint.

0
0.0025

0.005
0.0075

0.01
0.0125

0.015
0.0175

0.02

DL

in
t W

ar
n.

 /
 #

Co
v.

 O
p.

Websites traffic ranking

Quartile 1-3
Mean

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

JS

Hi
nt

 W
ar

ni
ng

 /
 L

O
C

Websites traffic ranking

Quartile 1-3
Mean

Figure 5: Number of warnings over site rank.

4.3 Code Quality versus Web Site Popularity

RQ3: How does the number of violations of code qual-
ity rules relate to the popularity of a web site?
We address this question by analyzing web sites of different
popularity ranks and by computing the overall number of
warnings produced by DLint and JSHint. More specifically,
we gather a random sample of web sites from the Alexa top
10, 50, . . . , 10000 web sites and apply both checkers to each
set of samples. Figure 5 shows the number of reported warn-
ings. The left figure shows the relation between the number
of JSHint warnings reported per LOC (vertical axis) and the
ranking of the web site (horizontal axis). The right figure
shows the relation between the number of DLint warnings
per operation executed (vertical axis) and the ranking of the
web site (horizontal axis). The correlation is 0.6 and 0.45
for DLint and JSHint, respectively, suggesting that popular
web sites tend to have fewer violations of code quality rules.

4.4 Performance of the Analysis
Figure 3d shows the overall time required to apply DLint

to a web site. The time is composed of the time to inter-
cept and instrument JavaScript code, the time to execute
code and render the page, and the time to summarize and
report warnings. Most of the time is spent executing the
instrumented code, which naturally is slower than executing
non-instrumented code [49]. Given that DLint is a fully
automatic testing approach, we consider the performance of
our implementation to be acceptable.

4.5 Examples of Detected Problems
The main goal of checking code quality rules is not to

detect bugs but to help developers avoid potential prob-
lems. Nevertheless, we were happy to stumble across 19

Figure 6: NaN and overflow bugs found by DLint.

serious problems, such as corrupted user interfaces and dis-
playing incorrect data, while inspecting warnings reported
by DLint. Due to limited space, this section reports only
some examples, all of which are missed by JSHint.

Not a Number. Checker V2 reveals several occurrences
of NaN that are visible on the web site. For example, Fig-
ure 6 shows NaN bugs detected by DLint on the web sites
of IKEA (1) and eBay (2), where articles cost the incredibly
cheap “$NaN”, and an official website of a basketball team9

(3), where a player had “NaN” steals and turnovers. To help
understand the root cause, DLint reports the code location
where a NaN originates. For example, the IKEA web site
loads the data to display and dynamically insert the results
into the DOM. Unfortunately, some data items are missing
and the JavaScript code initializes the corresponding vari-
ables with undefined, which are involved in an arithmetic
operation that finally yields NaN.

Overflows and Underflows. Figure 6 (4 and 5) shows two
bugs related to arithmetic overflow and underflow detected
by DLint on the sites of Tackle Warehouse and CCNEX.
The cause of the problem are arithmetic operations that
yield an infinite value that propagates to the DOM.

Futile Write. DLint warns about the following code snip-
pet on Twitch, a popular video streaming web site:

1 window.onbeforeunload=
2 "Twitch.player.getPlayer().pauseVideo();"
3 window.onunload="Twitch.player.getPlayer().pauseVideo();"

The code attempts to pause the video stream when the
page is about to be closed. Unfortunately, these two event
handlers are still null after executing the code, because de-

9
http://www.uconnhuskies.com/

http://www.uconnhuskies.com/

velopers must assign a function object as an event handler of
a DOM element. Writing a non-function into an event han-
dler property is simply ignored by DOM implementations.

Style Misuse. DLint found the following code on Craigslist:

1 if (document.body.style === "width:100\%") { ... }

The developer tries to compare style with a string, but
style is an object that coerces into a string that is mean-
ingless to compare with, e.g., “CSS2Properties” in Firefox.

Properties of Primitives. Besides web sites, we also ap-
ply DLint to the Sunspider and Octane benchmark suites.
Due to space limitations, detailed results are omitted. The
following is a problem that Checker L6 detects in Octane’s
GameBoy Emulator benchmark:

1 var decode64 = "";
2 if (dataLength > 3 && dataLength % 4 == 0) {
3 while (index < dataLength) {
4 decode64 += String.fromCharCode(...)
5 }
6 if (sixbits[3] >= 0x40) {
7 decode64.length -= 1; // writing a string’s property
8 }
9 }

Line 7 tries to remove the last character of decode64. Un-
fortunately, this statement has no side effect because the
string primitive is coerced to a String object before ac-
cessing length, leaving the string primitive unchanged.

4.6 Threats to Validity
The validity of the conclusions drawn from our results are

subject to several threats. First, both DLint and JSHint in-
clude a limited set of checkers, which may or may not be rep-
resentative for dynamic and static analyses that check code
quality rules in JavaScript. Second, since DLint and JSHint
use different reporting formats, our approach for matching
the warnings from both approaches may miss warnings that
refer to the same problem and may incorrectly consider re-
ports as equivalent. We carefully inspect and revise the
matching algorithm to avoid such mistakes.

5. RELATED WORK
Several dynamic analyses for JavaScript have been pro-

posed recently, e.g., to detect type inconsistencies [41], data
races [44], and cross-browser issues [38]. JITProf identifies
performance bottlenecks caused by code that JIT engines
cannot effectively optimize [24]. Each of these approaches
addresses a particular kind of error, whereas DLint is a
generic framework for checking code quality rules. Other dy-
namic program analyses for JavaScript include determinacy
analysis [48], information flow analyses [14, 7], library-aware
static analysis [33], and symbolic execution approaches [47].
BEAR [23] allows for inferring user interaction requirements
from runtime traces. In contrast, our work aims at finding
violations of coding practices.

Static analyses beyond the checkers discussed elsewhere
in this paper include analyses to detect potential type er-
rors [53, 31, 27, 25] and a sophisticated points-to analy-
sis [52]. Feldthaus et al. propose a refactoring framework
for specifying and enforcing JavaScript practices [20]. JS-
Nose [19] is a metric-based technique that can detect 13 code
smells in JavaScript. In contrast to these approaches, our
work explores how dynamic analysis can complement exist-
ing static analyses. Several authors propose approaches for

semi-automatically [36, 22] or automatically [12] repairing
JavaScript applications.

Artzi et al. propose a UI-level test generation framework
for web applications [6]. EventBreak [40] uses a performance-
guided test generation algorithm to identify unresponsive-
ness web applications. These and other UI-level test gener-
ation approaches [37, 34, 18, 6, 17, 54, 13] may be combined
with DLint to extend the set of analyzed executions.

The complementary nature of static and dynamic anal-
ysis can be exploited by combining both approaches [51].
Feldthaus et al. combine dynamic and static analysis of
JavaScript to check if TypeScript [39] interfaces match a
library’s implementation [21]. DSD-Crasher [16] analyses
static code and runtime behaviour to find bugs. Others com-
bine both approaches to find security vulnerabilities [26] and
to debug and repair faults in Java programs [50].

FindBugs [30] is a static checker of code quality rules in
Java, which is similar in spirit to the checkers we compare
with and which also has been widely used in industry [10,
9]. PQL [35] is a “program query language” designed to
express code quality rules that programmers should follow.
It focuses on rules that can be expressed with a subset of
the runtime events supported by DLint. For example, PQL
cannot express queries over unary and binary operations.

Several empirical studies to understand the abilities of bug
detection tools have been performed. Rutar et al. compare
static bug finding tools for Java [46]. Rahman et al. compare
static bug checkers and defect prediction approaches [43].
Ayewah et al.[8] study and discuss the warnings reported by
FindBugs [30]. Our work differs from these studies by di-
rectly comparing static and dynamic analyses for JavaScript.

6. CONCLUSION
This paper describes DLint, a dynamic analysis that con-

sists of an extensible framework and 28 checkers that address
problems related to inheritance, types, language misuse, API
misuse, and uncommon values. Our work contributes the
first formal description of these otherwise informally docu-
mented rules and the first dynamic checker for rule viola-
tions. We apply DLint in a comprehensive empirical study
on over 200 of the world’s most popular web sites and show
that dynamic checking complements state-of-the-art static
checkers. Static checking misses at least 10.1% of the prob-
lems it is intended to find. Furthermore, DLint addresses
problems that are hard or impossible to reveal statically,
leading to 49 problems, on average per web site, that are
missed statically but found by DLint. Since our approach
scales well to real-world web sites and is easily extensible, it
provides a first step in filling an currently unoccupied spot
in the JavaScript tool landscape.

7. ACKNOWLEDGEMENTS
This research is supported by NSF Grants CCF-1423645

and CCF-1409872, by a gift from Mozilla, by a Sloan Foun-
dation Fellowship, by the German Federal Ministry of Ed-
ucation and Research (BMBF) within EC SPRIDE, and by
the German Research Foundation (DFG) within the Emmy
Noether Project “ConcSys”.

8. REFERENCES
[1] ESLint. http://eslint.org/.

[2] JSHint. http://jshint.com/.

[3] JSLint. http://www.jslint.com/.

[4] The Closure Linter enforces the guidelines set by
Google. https://code.google.com/p/closure-linter/.

[5] ECMAScript language specification, 5.1 edition, June
2011.

[6] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip.
A framework for automated testing of JavaScript web
applications. In ICSE, pages 571–580, 2011.

[7] T. H. Austin and C. Flanagan. Efficient
purely-dynamic information flow analysis. In PLAS,
pages 113–124, 2009.

[8] N. Ayewah, W. P. J., D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on
production software. In Workshop on Program
analysis for software tools and engineering, 2007.

[9] N. Ayewah and W. Pugh. The google findbugs fixit. In
Proceedings of the Nineteenth International
Symposium on Software Testing and Analysis, ISSTA
2010, Trento, Italy, July 12-16, 2010, pages 241–252,
2010.

[10] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix,
and Y. Zhou. Using findbugs on production software.
In Companion to the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA
2007, October 21-25, 2007, Montreal, Quebec, Canada,
pages 805–806, 2007.

[11] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. R. Engler. A few billion lines of code later: Using
static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66–75, 2010.

[12] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè.
Automatic workarounds for web applications. In
Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2010, Santa Fe, NM, USA, November 7-11, 2010,
pages 237–246, 2010.

[13] W. Choi, G. Necula, and K. Sen. Guided GUI testing
of Android apps with minimal restart and
approximate learning. In Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2013.

[14] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged information flow for JavaScript. In Conference
on Programming Language Design and
Implementation (PLDI), pages 50–62. ACM, 2009.

[15] D. Crockford. JavaScript: The Good Parts. O’Reilly,
2008.

[16] C. Csallner, Y. Smaragdakis, and T. Xie. Dsd-crasher:
A hybrid analysis tool for bug finding. ACM Trans.
Softw. Eng. Methodol., 17(2), 2008.

[17] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
Webmate: A tool for testing web 2.0 application. In
JSTools, 2012.

[18] C. Duda, G. Frey, D. Kossmann, R. Matter, and
C. Zhou. Ajax crawl: Making Ajax applications
searchable. In ICDE, pages 78–89, 2009.

[19] A. M. Fard and A. Mesbah. JSNOSE: detecting

javascript code smells. In 13th IEEE International
Working Conference on Source Code Analysis and
Manipulation, SCAM 2013, Eindhoven, Netherlands,
September 22-23, 2013, pages 116–125, 2013.

[20] A. Feldthaus, T. D. Millstein, A. Møller, M. Schäfer,
and F. Tip. Tool-supported refactoring for javascript.
In Proceedings of the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA,
October 22 - 27, 2011, pages 119–138, 2011.

[21] A. Feldthaus and A. Møller. Checking correctness of
typescript interfaces for javascript libraries. In
Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), pages 1–16.
ACM, 2014.

[22] J. Frolin S. Ocariza, K. Pattabiraman, and
A. Mesbah. Vejovis: Suggesting fixes for JavaScript
faults. In ICSE, 2014.

[23] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli.
Mining behavior models from user-intensive web
applications. In 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India -
May 31 - June 07, 2014, pages 277–287, 2014.

[24] L. Gong, M. Pradel, and K. Sen. Jitprof: Pinpointing
jit-unfriendly javascript code. Technical Report
UCB/EECS-2014-144, EECS Department, University
of California, Berkeley, Aug 2014.

[25] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing
local control and state using flow analysis. In ESOP,
pages 256–275, 2011.

[26] W. G. J. Halfond, S. R. Choudhary, and A. Orso.
Improving penetration testing through static and
dynamic analysis. Softw. Test., Verif. Reliab.,
21(3):195–214, 2011.

[27] P. Heidegger and P. Thiemann. Recency types for
analyzing scripting languages. In European Conference
on Object-Oriented Programming (ECOOP), pages
200–224, 2010.

[28] D. Herman. Effective JavaScript: 68 Specific ways to
harness the power of JavaScript. Addison-Wesley,
2013.

[29] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
Companion to the Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 132–136. ACM, 2004.

[30] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Notices, 39(12):92–106, 2004.

[31] S. H. Jensen, A. Møller, and P. Thiemann. Type
analysis for JavaScript. In Symposium on Static
Analysis (SAS), pages 238–255. Springer, 2009.

[32] S. C. Johnson. Lint, a C program checker, 1978.

[33] M. Madsen, B. Livshits, and M. Fanning. Practical
static analysis of JavaScript applications in the
presence of frameworks and libraries. In
ESEC/SIGSOFT FSE, pages 499–509, 2013.

[34] A. Marchetto, P. Tonella, and F. Ricca. State-based
testing of Ajax web applications. In ICST, pages
121–130. IEEE Computer Society, 2008.

[35] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: A
program query language. In Conference on

http://eslint.org/
http://jshint.com/
http://www.jslint.com/
https://code.google.com/p/closure-linter/

Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 365–383. ACM,
2005.

[36] F. Meawad, G. Richards, F. Morandat, and J. Vitek.
Eval begone!: semi-automated removal of eval from
javascript programs. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
USA, October 21-25, 2012, pages 607–620, 2012.

[37] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling
Ajax by inferring user interface state changes. In
International Conference on Web Engineering
(ICWE), pages 122–134, 2008.

[38] A. Mesbah and M. R. Prasad. Automated
cross-browser compatibility testing. In Proceedings of
the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI,
USA, May 21-28, 2011, pages 561–570, 2011.

[39] Microsoft. TypeScript Language Specification, Version
1.0. 2014.

[40] M. Pradel, P. Schuh, G. Necula, and K. Sen.
EventBreak: Analyzing the responsiveness of user
interfaces through performance-guided test generation.
In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2014.

[41] M. Pradel, P. Schuh, and K. Sen. TypeDevil:
Dynamic type inconsistency analysis for JavaScript. In
International Conference on Software Engineering
(ICSE), 2015.

[42] M. Pradel and K. Sen. The good, the bad, and the
ugly: An empirical study of implicit type conversions
in JavaScript. In European Conference on
Object-Oriented Programming (ECOOP), 2015.

[43] F. Rahman, S. Khatri, E. T. Barr, and P. T. Devanbu.
Comparing static bug finders and statistical
prediction. In 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India -
May 31 - June 07, 2014, pages 424–434, 2014.

[44] V. Raychev, M. T. Vechev, and M. Sridharan.
Effective race detection for event-driven programs. In
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of

SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, pages 151–166, 2013.

[45] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do - a large-scale study of the use of
eval in JavaScript applications. In ECOOP, pages
52–78, 2011.

[46] N. Rutar, C. B. Almazan, and J. S. Foster. A
comparison of bug finding tools for java. In
International Symposium on Software Reliability
Engineering (ISSRE), pages 245–256. IEEE Computer
Society, 2004.

[47] P. Saxena, D. Akhawe, S. Hanna, F. Mao,
S. McCamant, and D. Song. A symbolic execution
framework for JavaScript. In IEEE Symposium on
Security and Privacy, pages 513–528, 2010.

[48] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip.
Dynamic determinacy analysis. In PLDI, pages
165–174, 2013.

[49] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs.
Jalangi: A selective record-replay and dynamic
analysis framework for JavaScript. In European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering
(ESEC/FSE), 2013.

[50] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and
M. J. Harrold. Fault localization and repair for java
runtime exceptions. In Proceedings of the Eighteenth
International Symposium on Software Testing and
Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23,
2009, pages 153–164, 2009.

[51] Y. Smaragdakis and C. Csallner. Combining static
and dynamic reasoning for bug detection. In
International Conference on Tests and Proofs (TAP),
pages 1–16. Springer, 2007.

[52] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and
F. Tip. Correlation tracking for points-to analysis of
javascript. In ECOOP 2012 - Object-Oriented
Programming - 26th European Conference, Beijing,
China, June 11-16, 2012. Proceedings, pages 435–458,
2012.

[53] P. Thiemann. Towards a type system for analyzing
JavaScript programs. In ESOP, pages 408–422, 2005.

[54] S. Thummalapenta, K. V. Lakshmi, S. Sinha,
N. Sinha, and S. Chandra. Guided test generation for
web applications. In International Conference on
Software Engineering (ICSE), pages 162–171. IEEE,
2013.

	Introduction
	Approach
	Rules, Events, and Runtime Patterns
	Problems Related to Inheritance
	Inconsistent Constructor
	Shadowing Prototype Properties

	Problems Related to Types
	Accessing the ``undefined'' Property
	Concatenate undefined and a String

	Problems Related to Language Misuse
	For-in Loops over Arrays
	Properties of Primitives
	Unnecessary Reference to this

	Problems Related to API Misuse
	Coercion of Wrapped Primitives
	Futile Writes of Properties
	Treating style as a String

	Problems Related to Uncommon Values
	Not a Number

	Implementation
	Evaluation
	Experimental Setup
	Dynamic versus Static Checking
	Code Quality versus Web Site Popularity
	Performance of the Analysis
	Examples of Detected Problems
	Threats to Validity

	Related Work
	Conclusion
	Acknowledgements
	References

