Effective Race Detection for Event-Driven Programs

Veselin Raychev

ETH Ziirich
veselin.raychev@inf.ethz.ch

Abstract

Like shared-memory multi-threaded programs, event-driven
programs such as client-side web applications are suscep-
tible to data races that are hard to reproduce and debug.
Race detection for such programs is hampered by their per-
vasive use of ad hoc synchronization, which can lead to a
prohibitive number of false positives. Race detection also
faces a scalability challenge, as a large number of short-
running event handlers can quickly overwhelm standard
vector-clock-based techniques.

This paper presents several novel contributions that ad-
dress both of these challenges. First, we introduce race cov-
erage, a systematic method for exposing ad hoc synchroniza-
tion and other (potentially harmful) races to the user, signif-
icantly reducing false positives. Second, we present an ef-
ficient connectivity algorithm for computing race coverage.
The algorithm is based on chain decomposition and lever-
ages the structure of event-driven programs to dramatically
decrease the overhead of vector clocks.

We implemented our techniques in a tool called EVENT-
RACER and evaluated it on a number of public web sites.
The results indicate substantial performance and precision
improvements of our approach over the state-of-the-art. Us-
ing EVENTRACER, we found many harmful races, most of
which are beyond the reach of current techniques.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging — Testing tools; F.3.1
[Logics and Meaning of Programs]: Specifying and Verify-
ing and Reasoning about Programs

General Terms Algorithms, Verification

Keywords Asynchrony; Concurrency; Nondeterminism;
Race Detection; Web

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

OOPSLA ’13, October 29-31, 2013, Indianapolis, Indiana, USA.

Copyright © 2013 ACM 978-1-4503-2374-1/13/10... $15.00.
http://dx.doi.org/10.1145/2509136.2509538

Martin Vechev

ETH Ziirich
martin.vechev@inf.ethz.ch

Manu Sridharan

IBM T.J. Watson Research Center
msridhar@us.ibm.com

1. Introduction

Event-driven applications are vulnerable to concurrency er-
rors similar to those in standard multi-threaded applications.
In a typical event-driven program, event handlers are exe-
cuted by an event dispatcher as a result of event firing. Event
handlers usually execute atomically in a single thread, so
handler code can assume that no other handlers execute con-
currently. However, such systems allow for events to be fired
non-deterministically (due to user actions, I/O timing, etc.),
which may cause the corresponding event handlers to run in
a non-deterministic order. This non-determinism can cause
serious errors when event handlers share mutable state.

Client-side web applications are an important class of
event-driven programs susceptible to such errors, as dis-
cussed in recent work [15]. Modern web applications make
extensive use of asynchrony, via so-called “AJAX” requests
and also of asynchronous code loading to speed up per-
ceived page load time. This asynchrony can lead to non-
deterministic errors, which can have severe consequences for
users: e.g., the Hotmail email service was temporarily bro-
ken in the Firefox web browser due to a data race, potentially
causing loss of message content [11].

The web platform provides few synchronization primi-
tives to programmers. Hence, web applications are forced
to coordinate event handler execution via standard shared
variables, i.e., ad hoc synchronization. The atomic execution
of event handlers makes such coordination safe. However,
lacking knowledge of this synchronization, existing dynamic
race detectors [4, 15, 16] report an overwhelming number of
races on web applications, exceeding 3000 for some of the
sites we tested. The vast majority of these races are harm-
less: they are either used for ad hoc synchronization or are
infeasible. Manual examination of such a large set of races
is nearly impossible, particularly due to the complex control
flow typically found in event-driven programs.

In this paper, we present two advances in concurrency
analysis for event-driven applications, making dynamic race
detection for such applications more practical. We first in-
troduce the notion of race coverage and show how it can be
used to quickly expose ad hoc synchronization. Intuitively,
race a covers race b iff treating a as synchronization elim-
inates b as a race. Importantly, uncovered races are defined
and computed in a way which guarantees that both execution



orderings of the corresponding memory accesses are possi-
ble. Since synchronization is employed to handle multiple
possible execution orderings, this guarantee makes it very
likely that races on synchronization variables will be uncov-
ered. By inspecting uncovered races first, a user can quickly
identify races on synchronization variables and completely
avoid inspecting false positives covered by those races. Our
evaluation found the set of variables with uncovered races to
be 14X smaller on average than the set of all variables with
races, and we found that many uncovered races were in fact
harmful.

Second, we present a dynamic analysis algorithm that ef-
ficiently computes races in event-driven programs by keep-
ing the width of its vector clocks much smaller than the
standard approach. Our technique employs chain decompo-
sition [7] to discover cases where different event handlers
can safely re-use the same vector clock slot. This optimiza-
tion dramatically reduces the sizes of the vector clocks in
practice, significantly improving performance. Using this
algorithm as a building block, we present a second algo-
rithm which efficiently discovers all variables with uncov-
ered races in an execution trace.

To further reduce triage effort for races in web applica-
tions, we performed an extensive study of thousands of races
and developed six filters for common types of harmless or
synchronization races. In our experiments, the filters addi-
tionally (beyond coverage) reduced the number of races to
inspect by a factor of 2.5.

We implemented our dynamic analysis by first modifying
the WebKit browser [20] to log a trace of relevant events
from a web application run to disk. Then, our tool ana-
lyzes the log, computes coverage, classifies discovered races
based on our filters, and displays results in a rich browser-
based user interface. In our experimental evaluation, we ran
the tool on a wide variety of web sites. Despite the obfus-
cated code on many of the sites, we were able to inspect
the uncovered races and manually identify many harmful
races and synchronization variables. Using EVENTRACER,
we have found harmful races on the front pages of 21 For-
tune 100 companies. Our tool is usable by web developers,
scalable to real web applications, and available open source
at http://www.eventracer.org.

We believe that the techniques described in this work
may be applicable in other settings which involve heavy user
interface manipulations (e.g. Android, i10S).

Main Contributions The contributions of this work are:

e We introduce the concept of race coverage, which en-
ables identification of ad hoc synchronization and greatly
reduces the number of false positive races reported in
event-driven programs.

® We present a fast dynamic race detection algorithm based
on vector clocks which uses chain decomposition to re-
duce the width of the used vector clocks significantly.

e Based on the above algorithm, we present a fast algorithm
that computes uncovered races in an execution of an
event-driven program.

e We describe a set of filters for common harmless or
synchronization races in web applications.

e We present an extensive evaluation of race coverage and
filters on a large set of web sites. Our experimental results
confirm that variables with uncovered, unfiltered races
are more than 35 times fewer than all variables with
races. We also found 75 harmful races in the set of web
sites which we analyzed.

The paper is organized as follows. Section 2 motivates
the problem and describes a core language that enables us
to cleanly capture the essential features of event-driven pro-
grams. It also shows how to adapt existing state-of-the-art
dynamic race detectors to our language and discusses their
limitations. Section 3 formalizes the concept of race cov-
erage and states an important theorem on the feasibility of
uncovered races. Section 4 discusses efficient connectivity
algorithms for finding uncovered races. In Section 5, we dis-
cuss our implementation in WebKit as well as our race fil-
ters. Experimental results are discussed and summarized in
Section 6. Finally, Section 7 discusses related work and Sec-
tion 8 concludes.

2. Setting

In this section, we first give a small example web application
to motivate our techniques. Then, we define a simple parallel
language called Event which enables us to cleanly model the
essential concepts necessary for our analysis. We also define
necessary preliminaries such as races and vector clocks.
Finally, we show how to adapt current state-of-the-art race
detection algorithms to Event, and discuss their limitations.

2.1 Example

Consider the example in Fig. 1. The web page has an input
button, two script nodes with JavaScript code, and many
other elements which have been elided. Web browsers inter-
leave HTML parsing with handling of other events like user
actions; here, this means that the button can be clicked as
soon as the input element is parsed, potentially before or
between execution of the other scripts. This leads to po-
tential timing-dependent behaviors:

e If the button is clicked before the first script runs, the £
function invoked by the button’s onclick handler will
not yet have been declared, causing a JavaScript inter-
preter crash. The interpreter crash is not directly visible
to the user; however, the user will see no effect from the
button click, a usability bug.

e If the click occurs between execution of the two scripts,
"not ready" will be displayed, as init is still false.



<html><body>
<input type="button" id="b1l"
onclick="javascript:f()">
. <!'-- many elements -->

Ciripes Browser User
function £() { Parse input type="button”
if (init)
alert(y.g); show button
else

alert ("not ready");
}
var init = false, y = null;
</script>

() - crash!

;éc.:ript > Parse script
y =1 g: 42 }; define f
init = true;
</script>

</body></html>

Figure 1. Example web page with both a harmful race and
ad hoc synchronization. The trace on the right shows the
harmful interleaving.

e If the click occurs after the two scripts run, 42 will be
displayed.

Ideally, a race detection tool would efficiently expose
issues like the potential crash in this example to the user,
without showing too many false positives. In our work we
focused on building a dynamic race detector which works
by taking as input a program trace and then tries to find
(harmful) races between concurrent operations in that trace.
‘We shall discuss challenges in building such a tool at the end
of the section, after introducing some terminology.

2.2 Language

Next, we introduce a simple parallel language, called Event
as shown in Fig. 2. This language cleanly captures the es-
sential features of event-driven applications (like web appli-
cations) that are necessary for our analysis. Sections 3 and 4
formulate our race detection techniques for Event programs,
and then Section 5.1 shows in more detail how a web appli-
cation execution trace can be translated to a trace of an Event
program.

A program in Event consists of a top-level event action,
which can read or write shared variables and create (fork)
other event actions. This language is more restricted than a
general fork-join parallel language. In particular, an event
action can begin execution only following the completion
of another event action, and all event actions execute atom-
ically, without interruption. However, it is still possible to
have multiple event actions available for execution at any
point in the program execution, and the choice for which
of these actions to schedule next is non-deterministic. The
sequential parts of the language such as definitions of condi-
tionals, loops and expressions are standard and are omitted
for brevity. We consider only the following relevant opera-
tions:

S = S8 | rd(t,z) | wr(t,z) |
fork(t,u, EventAction)
EventAction = Joins;begin(t); S; end(t)
Joins = Joins; Joins | join(t,u)
Program = FEwventAction
Operation == rd(t,z) | wr(t,z) | begin(t) | end(t) |
fork(t,u, EventAction) | join(t,u)
t,bu € FEventlds
T € Vars
a,b € Operation

Figure 2. The Event language

¢ rd(t, z) denotes that event action ¢ performs a read of a
shared variable x. Similarly, wr(t, z) denotes writing to
x.

e fork(t,u, Event Action) means that event action ¢ forks
an event action u with the operations that « must execute
specified in EventAction.

¢ join(t,u) denotes that event action ¢ must wait until
another event action u completes.

® begin(t) and end(t) denote the beginning and ending of
an event action. At any time, up to one event action can be
executing. That is, event action execution is atomic. Note
that in our language, all reads, writes and forks always
occur between begin and end.

As an example of translating a web program to Event,
consider again the example in Fig. 1. In web programs, only
parsing of individual HTML tags is atomic, to enable a quick
response to interleaved events like user clicks. For Fig. 1, the
parsing of the input tag and each script tag gets translated
to a separate event action. Element ordering is captured
by adding appropriate fork operations to tag-parsing event
actions; for the example, the parsing event action for the
input tag forks the script-parsing event action. An event
action represents event handler execution for each user click
on the button, and such actions join on the input-parsing
event action (as the button must be present to be clicked).
The variable accesses in the scripts translate to wr and rd
operations in the event actions executing the scripts. We also
generate a wr operation for creation of the £ function, and a
rd operation for the access of £ from the button’s onclick
handler.

Fig. 3 shows an execution of the application from Fig. 1
translated to Event. In this execution, the web application is
loaded and one click of the button with id b1 is performed.
Some details of the full translation are omitted for clarity
(e.g. parsing of the html or body tags generates event actions
that are omitted). In the execution in Fig. 3, event action
4 is a click that happens after the script in event action



s 1. Event action: input type="button” 7
begin(1)

wr(1, #bl) - create button
Fork(1,4,")
fork(1,2,4)

end(1)

( 2. Event action: parse first script 7
begin(2)
wr(2, f) // create function £()

fork(2,3, )
end(2)

( 3. Event action: parse second script N
begin(3)

wr(3,y) // var y =
wr(3,y.9)// { g: 42 }
wr(3,4nit) // var init = true
end(3)

4. Event action: click button
begin(4)
Y, rd(4, f) // javascript:f()
wr(4,init) // if (init)

end(4)

Figure 3. Example trace for the program in Fig. 1 translated
to the Event language. Some details are missing for clarity.

2 has executed. However, the click could have happened
before the script is parsed, leading to an exception because
javascript:f() would then call an undefined function. Our
tool detects this race by performing a dynamic analysis of a
single execution trace (i.e. like the one in Fig. 3).

2.3 Order, Races, and Vector Clocks

The execution of a program is defined via traces, where a
finite trace m = ag-a -...-a, € Operation™ (withn > 0) is
a sequence of operations in our language. Here, we abstract
away the configurations (states) of the program and only
keep the operations. We use the notation [P] to denote the
set of all traces for a given program P.

Trace Order For a given trace m, if operation a occurs
before operation b in 7, we say that ¢ <, b. To simplify
exposition we assume that each operation appears only once
in the trace (if it appears multiple times, we can always
assign a unique identifier to each appearance). Similarly, we
say that event action ¢ precedes event action  in the trace,
denoted t <, u (we overload the operator), if begin(t) <
begin(u).

Happens-Before Given a trace 7, the happens-before rela-
tion =< over pairs of event actions ¢ and u in 7 is the minimal
transitively closed relation, such that t <« holds if ¢ = wu,
fork(t,u,_) € m, or join(u,t) € 7 (here we used _ to mean
any value is allowed). We denote the event action of an oper-
ation a by ev(a). Given a trace 7, a happens-before relation
between two operations a and b occurring in the trace, de-
noted a = b (again, we overload the operator), is true if:

e ev(a) # ev(b) and ev(a) <ev(b), or
e cv(a) =ev(b)anda <. b

The =< relation (for operations) is transitive due to
transitivity of < (for event actions) and <, . When a <b
is false we write a A b.

Definition 2.1 (Race). Given a trace 7 and operations a
and b where a < b, a race R = (a,b) is a pair where both
operations access the same variable, at least one is a write
and aAb.

Intuitively, if a trace contains a race R, it means that the
order between racing operations may change in other traces.
Depending on the kind of operations participating in the
race, we refer to it as a read-write, write-read or a write-write
race.

Vector clocks One approach for capturing the happens-
before relation is using vector clocks [10]. A vector clock
VC: T — N holds a natural number for each element in 7.
An important function on vector clocks is the join function
(). Additionally, we define a minimal element (_Ly/) and
a function inc; for incrementing the ¢-th component of a
vector clock (similar notation appears elsewhere [4]):

VCL UV = At.max(VCi(t), VCO2(1))
1y =Xt.0
inc;(VC) = du. if t = uthen VC(u) + 1 else VC(u)

For simplicity, we define join on a set of vector clocks
{VC;} by L{VC;} tobe VCy UV Cs U ... for a non-empty
set {VC;} and Ly otherwise.

2.4 Adapting Existing Online Dynamic Race Detectors

A naive approach to applying existing vector-clock based
online dynamic race detectors to our language is to create
a happen-before order between begin and end operations
encountered in the trace (essentially, mapping these opera-
tions to global lock/unlock operations). However, while this
translation maintains the atomic execution of event actions,
no races will be reported as all operations will be treated as
“ordered” by a standard race detector. Another, more fruitful
approach is to: i) avoid introducing happens-before arcs be-
tween begin and end operations of different event actions,
and ii) only explore traces where event actions do not in-
terleave. In this way, the race detector will not introduce un-
wanted orderings and it will not observe infeasible interleav-
ings.

Limitations Two problems arise when applying online
race detectors to event-driven programs, which our tech-
niques address:

Too many races In our experiments, we found that applying
race detectors to web programs directly leads to too many
races reported by the analysis (in the thousands). Many
of these races implement ad hoc synchronization or are
infeasible. For Fig. 1, the init variable is used for ad



hoc synchronization, to ensure y is initialized before it is
dereferenced. However, unaware of this synchronization,
a standard race detector would report an infeasible race
for the accesses to y.

Number of threads A state-of-the art detector such as FAST-
TRACK [4] keeps track of vector clocks for each thread
and for some of the variables. In FASTTRACK, a vector
clock requires O(n) space and vector clock operations
require O(n) time, where n is the number of threads.
We found that for our programs, n (the number of event
actions) grows into the thousands, hurting scalability.
The number of event actions can grow very quickly due
to fine-grained atomic actions, e.g., the parsing of each
HTML tag (see Section 2.2) and short-running event han-
dlers.

The concepts presented in the next section (Section 3)
aim to address the first limitation. The second limitation is
addressed in Section 4.

3. Race coverage

In this section we address a key problem which arises in race
detection: the race detector produces too many races to be
practically useful. This problem is significantly exacerbated
for programs in languages such as Event, as Event has no
synchronization primitives except joining to other event ac-
tions. This means that any synchronization between event
actions needs to be implemented by coordinating via shared
variables, which in turns means that a race detector will pro-
duce many false positives. These false positives can be cate-
gorized as follows:

¢ Synchronization races: these are races which implement
synchronization and are required for the program to work
correctly.

e Races covered by synchronization: these are races that
can never occur since other synchronization races in fact
introduce a happens-before edge.

Indeed, in our experiments in Section 6, we found that the
vast majority of races on a web site reported by a standard
race detector are false positives: many of them are either syn-
chronization races or they are covered by synchronization
races. The total number of races is often so large that manu-
ally inspecting all of them is almost impossible. Ideally, we
would like to focus only on real races, which are not ordered
by synchronization. Using race coverage, we were able to
report only races uncovered by synchronization, decreasing
the number of races reported by an order of magnitude.

3.1 Race coverage and multi-coverage

Next we define what it means for a race to be covered.
Intuitively, arace R = (a, b) is covered if there is some other
race S = (¢, d) such that if we treat S as synchronization and

Event action 1
y={f:42} a«
init=true Ce |«

~ o Event action 2
“Nted if(init)
) alert(y.f)

Figure 4. An example of race coverage based on Fig. 1.
Race R = (a,b) is covered by race S = (¢, d), since with a
happens-before edge from c to d, R would clearly not be a
race.

Event action 1
y={f:42} a«
il=true Cie\

Event action 2

Event action 3 d2
if(i2) -
alert(y.f)

Figure 5. An example with a race R = (a, b) covered by
two races S = (c¢1,dy) and Se = (c2,d2)

create a happens-before edge between c and d, then the race
R will disappear, that is, R will no longer be a race.

Definition 3.1 (Covered race). We say that a race R = (a, b)

is covered by race S = (c,d) if the following conditions
hold:

1. ev(a)Zev(c), and
2.d=b

We denote that race S covers race R by {S} <« R. Note
that we need d < b and it is not enough to say ev(d) < ev(b)
as d must come before b, even if they are part of the same
event action. Similarly, if we say a =< ¢, then that would be
too restrictive as ¢ can come before a if they are in the same
event action.

Example Fig. 4 shows an example of the conditions in
the above definition, based on the scripts in Fig. 1. The
dashed lines denote the two races. On its own, the race
R on y may seem harmful: if the read of y.f executes
before initialization, an exception will be thrown. However,
the synchronization on variable init (the covering race 5)
prevents R from ever executing in a “bad” order, i.e., R is
not really a race.

Next, we generalize Definition 3.1 to the case where
a race is covered by multiple races. The intuition behind
this generalization in that enforced ordering constraints via
(multiple) synchronization races are transitive.

Definition 3.2 (Multi-covered race). We say that a race
R = (a,b) is covered by a set of races {S; = (c;,d;)}1 if
the following conditions hold:

1. ev(a)<ev(cr)

2. foreveryi € [1,n), ev(d;) S ev(ciy1).

3. dp=b



We denote multi-coverage by {S;}}_; < R. The example
in Fig. 5 shows a fragment of an execution with one race R
covered by two other races S7 and Ss.

Let races(m) denote the set of all races which occur in a
trace 7. An uncovered race is one for which no combination
of races in the trace 7 cover it. We denote the set of all
uncovered races by:

uncovered(m) = {R |R € races(n),
3C C races(n): C 4 R}

3.2 Guarantees

Next, we show that all uncovered races are feasible (i.e.,
cannot be eliminated) in the sense that the racing operations
of an uncovered race can appear in arbitrary order. This
property is important because such races are likely to be
of greater interest to the programmer, as they cannot be
eliminated regardless of which other races are considered as
synchronization.

First, we define the possible re-orderings of a trace T,
referred to as [r]]. Recall that the notation [P] means the
set of all program traces of a program P.

Definition 3.3 (Equivalence Class). For a trace m, [n] C
[P] is a set of program traces such that for every trace
7' € [n], the following conditions hold:

1. if operation a € 7', then a € T.

2. if operations a,b € m, b € 7/, and a < b, then a € 7’ and
a <z b

3. if operations a,b € 7, b € 7', and race R = (a,b) is a
race in T, then either:
(a) a € ' and a < b, or
(b) a € 7' and b is the last operation of T'.

Intuitively, the set [7] includes the traces that satisfy the
happens-before relation < and where all races in 7 are
resolved in the same way in each trace in [r], that is, racing
accesses follow the same order in the trace. The set [7]
allows for one case where a race in 7’ is not resolved in
the same way as in 7. This occurs when condition 3(a) does
not hold, but condition 3(b) holds. We call such a race an
accessible race:

Definition 3.4 (Accessible race). A race R = (a,b) in a
trace T is accessible, if there exists a trace ' € [r], such
thatb € ', but a & 7'.

From both definitions, it follows that operation b must be
the last operation of 7’. Intuitively, this is because after an
accessed race occurs, we may not be always able to reason
about the behavior of the program only based on the trace
7. The next two theorems discuss the connection between
uncovered and accessible races.

Theorem 3.5. [fa race R € races(w)\ uncovered(r), then
R is not accessible.

The above theorem states that if a race R is covered, then
for the equivalence class [r], the race is inaccessible. The
intuitive reason is that as R is covered by some other race S,
the operations in .S will always occur in the same order in
any trace in [7] which would force R’s operations to follow
the same order as well, meaning that the operations of R
cannot be re-ordered in any of the traces in [r].

The next theorem states that any uncovered race is acces-
sible. This means that any race that we report as uncovered
is guaranteed to “exist” for some trace.

Theorem 3.6. For a trace , if R € uncovered(r), then R
is an accessible race.

Using the definition of a multi-covered race, it can be
shown that for a trace 7, races(w) # 0 iff uncovered(r) #
(). Then the following is a direct corollary from Theorem 3.5
and Theorem 3.6.

Corollary 3.7. A trace w is race-free ([ has no accessible
races) iff races(m) = 0.

This result is useful as it tells us that if we do not find a
race in a given trace, then it means that there are no races for
the other traces in [7]. Conversely, Theorem 3.6 tells us that
certain races always exist and cannot be eliminated.

In the next section, we will show algorithms for comput-
ing the set of uncovered races.

4. Computation of Uncovered Races

In this section, we present algorithms which compute uncov-
ered races. These algorithms report at least one uncovered
race per variable on which there are uncovered races in the
execution. We present our algorithms using graph terminol-
ogy and discuss how they can be realized both in an online
as well as in an offline setting.

4.1 Happens-Before via Graph Connectivity

Happens-before queries can be answered as connectivity
queries in a graph. Given a trace 7, we build a graph G =
(V, E) where the nodes V' C Ewentlds represent all event
actions in the trace and the arcs £ C Eventlds x Eventlds
are such that for any pair of nodes ¢ and u, there is a path
from ¢ to u in G iff ¢ <w. That is, given a trace 7, we define:

o V ={t|begin(t) € 7}, and
o E={(t,u) | fork(t,u,_) € m or join(u,t) € 7}

The graph G is a directed acyclic graph and the sequence
of event actions in any valid trace 7 is a topological ordering
traversal of . Then, given a trace 7, by first building the
graph GG (which represents the happens-before relation =)
we can determine if a pair of operations which access the
same variable (with at least one operation being a write) are
racing by checking whether their corresponding two event
actions (two nodes) are connected in G.

'In an online detector, the trace can be partial.



(b)
Figure 6. Example showing vector clocks with and without
chain decomposition.

Next, we discuss four orthogonal algorithms for perform-
ing graph connectivity. All of these algorithms are later
evaluated on graphs obtained from traces of web programs
(see Table 3 in Section 6).

4.1.1 Breadth-first search (BFS)

A standard algorithm for connectivity checking between a
pair of nodes performs a breadth-first or depth-first graph
traversal of GG. Then, each connectivity check has a maxi-
mum time complexity of O(|E|), but many checks complete
faster. While the algorithm has the advantage of low space
complexity, our experiments indicate that such an algorithm
performs on average orders of magnitude slower (than our fi-
nal algorithm) and is unable to complete execution on some
web applications in a reasonable amount of time.

4.1.2 Vector Clocks

Many race detection algorithms determine connectivity us-
ing vector clocks, described previously in Section 2.3. Each
node is assigned a vector clock of width [V, with one slot
per node. The vector clock ve(t) for node ¢ is defined as:

ve(t) = iney (W {ve(u) | u #t, (u,t) € E})

Since the graph G is acyclic, the function vc is well defined.
For a pair of nodes t and u, t < u holds iff ve(t)[t] < ve(u)[t]
(see the reachability theorem in [7]). Hence, given a pre-
computed vc function for each node, a reachability query
takes one integer comparison, which is constant time.

As an example, Fig. 6(a) shows a small graph and the
corresponding vector clocks for each node (the node number
is its vector-clock index). Given the vector clocks, we can
see, e.g., that event 1 does not happen before event 2, since
ve(1)[1] > ve(2)[1].

The above algorithm has O(|V|?) space complexity, and
since our event graphs can have thousands of nodes or more,
this leads to a blowup in practice. We evaluated a sim-
ple vector-clock-based algorithm and found it to run out of
memory for some of our applications (see Section 6).

4.1.3 Vector clocks with Bit Vectors

An interesting observation is that if each node uses its own
vector clock entry, vector clocks can be represented com-
pactly using bit vectors, as each entry will always be 0 or 1
(as in Fig. 6(a)). However, even with this optimization, the
algorithm required more than a gigabyte of memory to han-
dle larger applications in our experiments.

4.1.4 Vector clocks with chain decomposition

We propose an improved graph connectivity algorithm
which combines vector clocks with chain decomposition
similar to the one proposed by Jagadish et al. [7] and Awar-
gal and Garg [1]. A chain decomposition optimization sug-
gests covering the nodes of a graph with a minimal number
of chains for performing fast connectivity queries. A chain
is a set of nodes {a; }!™, such that there is a path from a; to
a;+1 in G for every ¢ € [1,m). Let CIds denote the set of
all chains. Then, we assign every node in G to a chain via the
function cid: Eventlds — ClIds. For example, Fig. 6(b)
shows a chain decomposition of the example graph, using
two chains, one in dark grey and one in light grey.

Given the chain assignment, we allocate one vector clock
of width |CIds| (in this case VC': CIds — N) for every
node ¢ in the graph and assign the vector clock values ac-
cording to a modified function ve: Eventlds — VC:

ve(t) = inceae) (U{ve(u) | v #t, (u,t) € EY)

Since the number of chains is typically much smaller than
the number of nodes (over 33X smaller on average in our
experimental evaluation, as shown in Table 3), this technique
can dramatically reduce the size of vector clocks. Fig. 6(b)
shows how vector clocks of width 2 are assigned to the nodes
using the chain decomposition. Note that with chains, vector
clocks can no longer be represented using bit vectors.

Computing optimal chain decomposition has O(|V|?)
time complexity, but a greedy technique (which we use in
this work) typically produces as few chains [7]. The space
complexity of our connectivity algorithm is O(|CIds|-|V]),
and the time complexity for each query is O(1).

Representing the Graph G We note that vector clock con-
nectivity algorithms do not explicitly store the graph G.
They only maintain the map from nodes to vector clocks (as
well as the cid function for the algorithm in Section 4.1.4)
which is used to answer reachability queries.

4.2 Computation of initial set of races

Next, we describe the first step in computing uncovered
races. One way to compute uncovered races is to first com-
pute the set of all races. Using one of the four connectivity
algorithms above, we can compute the set of all races by
checking pairs of write operations or pairs of a read and a
write operation on the same variable. However, first comput-
ing the set of all races may be an unnecessary overhead. For



example, a variable with n writes may contain up to n-(n—1)
races if all of its writes are unordered by the =< relation.

Reduced starting set of races We next discuss how to
discover uncovered races by first computing a smaller set
of initial races. We refer to this set as UncoveredCandidates.
Consider a pair of races on the same variable R; = (a,c)
and Rs = (b, c) such that a < b. In this case, if R; covers
any other race R/, then R, also covers R’. Hence, we do not
need to obtain R; if we can obtain Rs.

Similarly to multi-coverage, the idea can be extended as
follows. We do not need to obtain a race R = (a,b) for
which there is a set of other races on the same variable
S; = (¢4,d;), S; # R, i € [1,n] where the following hold:

® g =cyora=cy,and
o d; =cj4q0rd; 2¢;yq foralli € [1,n), and
ed,=bord,<b

If the above conditions hold, from Definition 3.1 and
Definition 3.2, it follows that for any R/, if {R} <« R/,
then {S;}”_, <« R’ and hence we need not discover R’ as
there are other races (.5;) that will be found. That is, the set
UncoveredCandidates is the set of all races minus the set of
races which satisfy the above conditions.

Computation of UncoveredCandidates Consider a vari-
able with p writes w1, wa, ..., w, (here write w; happens be-
fore w;1 in the trace) and ¢ reads 71,72, ..., 7, (here read
r; happens before r; 1 in the trace). Below we define candi-
date pairs which we check for whether they participate in a
race:

e all pairs (w;, wit+1), ¢ € [1,p);

e for each r;, i € [1,q], where wp,eq; is the last write
before r; occurred (if one exists).

e for each r;, i € [1, q], the pair (7, Wsyce; ) Where Weyee;
is the write right after r; occurred (if one exists).

For each of the above pairs (a, b), if a Ab (checked using
one of the four algorithms described earlier), we add the pair
to the set UncoveredCandidates. This approach produces at
most p — 1 + 2 - g races per variable, a significant reduction
from the maximum number of possible races per variable

p-(p+qg—1).
4.3 Computation of uncovered races

Next, based on UncoveredCandidates, we present an algo-
rithm for finding all variables with uncovered races.

1. We first eliminate all races which are covered by only
one race. We sort the set UncoveredCandidates = { R; =
(a;, b))}, according to the order in which their second
operation appears in the trace 7, that is, if b; <, b;, then
1 < j. According to condition 2 of Definition 3.1, every
race R; may cover only races I?; such that ¢ < j.

Given this sorted order, for every remaining race r, we
remove all of the subsequent races in the ordering that r
covers according to Definition 3.1 (checking this requires
two connectivity queries for the two conditions). Let the
remaining set of races be RemainingCandidates.

2. Next, we present an algorithm for finding the set of
uncovered races, which also excludes races covered by
more than one race from the set RemainingCandidates.
We build a graph G’ = (V’, E’) with nodes representing
races generated from the previous step:

e V' = RemainingCandidates
* E"={((a,b),(c,d)) | ev(b) Zev(c)}

Then, for every race R = (¢,d) € V', if there exists a
pair of nodes S; = (a1,b1) € V' and Sy = (CLQ,bg) S
V', such that ev(c) < ev(ay), by < d, and there is a
path from Sy to Sy in G’, then R is a covered race. The
reason R is covered is that the set of races in the path
from S; to Se will cover R. After removing all such
races from RemainingCandidates, the remaining races
are uncovered races.

The correctness of the algorithm follows from the fact
that for every race R, if R is covered by a set of other races,
then it is covered by a set of uncovered races, which form a
path in G’ and the above algorithm will find that path.

Time complexity Let |UncoveredCandidates] = n and
|RemainingCandidates| = m. Assuming the time com-
plexity of the connectivity query is constant-time (which
is true for all three vector-clock connectivity algorithms),
then computation of uncovered races has time complexity
O(n - m + m?). As we will see in our experimental results,
this procedure usually takes less than a second.

4.4 Online Analysis

In an online setting where we do not store the trace , all of
the described algorithms can be realized as follows.

First, chain decomposition can be used online as a direct
replacement of naive vector clocks. Because connectivity
queries can be made while the graph is not fully built, the
online setting requires us to use a greedy chain assignment,
e.g. for every node added to the graph, we assign to it the
first possible chain (if such a chain exists), or to a new chain
otherwise.

Second, we can augment an existing vector clocks based
race detector to produce the set UncoveredCandidates. This
only requires the race detector to keep reporting races on a
variable even after it finds the first race.

Finally, to find uncovered races we maintain the map vc
(the mapping from nodes to vector clocks), which is instru-
mented state that standard race detectors already maintain.
We also maintain the graph G’ whose size is a small fraction
of the size of ve.



4.5 Offline Analysis

To use the described algorithms in an offline setting, we need
to store the trace 7. To mitigate the potential space overhead
from storing the full trace, we avoid storing some of the op-
erations. In our setting, if there are multiple races for one
variable between operations in the same pairs of event ac-
tions, we report only one race. This means that if an event
action contains multiple reads or multiple writes of one vari-
able, it is enough to store the first read and the first write.
This optimization is sound and does not affect the correct-
ness of the races we find or the guarantees provided by race
coverage. With this optimization, our experiments (in Sec-
tion 6.2) show that the size of trace log files is acceptable
and storing the entire trace in memory requires space com-
parable to the space consumed by vector clocks for the graph
connectivity algorithm.

5. Implementation

Here we describe the implementation of EVENTRACER,
which performs race detection offline on a trace in the Event
language (see Fig. 2), generated by an instrumented Web-
Kit browser. We chose to implement an offline race detector
since recorded traces enable apples-to-apples comparisons
of the different connectivity algorithms based on which race
coverage is computed (since each algorithm runs on the
same trace) and other detailed analyses; scalability of the
offline approach was not an issue (see Section 6.2). In this
section, we discuss the translation of web page executions
to the Event language, our implementation of the race detec-
tor, and some additional race filters that do useful automatic
categorization specific to web races.

5.1 Translation of a web application to Event

A translation from a web application to the Event language
consists of two main parts:

1. generating the read and write operations.

2. generating event actions and fork and join operations
between them.

Here we outline the main principles of our translation.
Our translation builds on the modelling of web semantics
in Petrov et al. [15], but we exploit the structure of Web-
Kit itself to achieve greater simplicity and generality when
generating event actions.

Memory accesses Our modeling of memory accesses is
largely identical to that of Petrov et al. [15], but we handle
more cases like JavaScript arrays; we describe it here briefly.
The web platform provides a high-level declarative language
for creating user interface elements (HTML and CSS) and a
scripting language for the application code (JavaScript). The
languages are linked by the Document Object Model (DOM)
APIs, which enable reading and modifying user interface
elements from JavaScript. When translating to the Event

1 <html><body>

2 <input type="button" id="b1">
3 <input type="button" id="b2"
4 onclick="javascript:f()">
5 <script>

6 var likeLocal, lazy;

7 function f£() {

8 likeLocal = 5;

9 if (!lazy) {

10 lazy = 9 + likeLocal;

11 }

12}

13  document.getElementById(’bl’)
14 .addEventListener ("click", f);

15 </script></body></html>

Figure 7. An example web application with several races.

1. Event action: parse line 2
wr(1, #bl) - create button

2. Event action: parse line 3

4. Event action: click on bl

rd(4, #bl.click
wr(2, #b2) - create button Ard(d, # )

] 7| wr(4,likeLocal)
wr(2, #b2.click) L’
, rd(4,lazy)

’ wr (4, lazy)
rd(4, likeLocal)

3 Event action: parse script
wr(3, f) - define £() «
rd(3, #b1) \
wr(3, #bl.click)=f & | *

\ 5. Event action: click on b2

\ rd(5, #b2.click)
‘erd(5, f) - javascript:f ()
wr(5, likeLocal)
rd(5, lazy)

Figure 8. Example trace for the program in Fig. 7, which in-
cludes several races. Solid arrows represent happens-before,
dashed lines show some of the races. Note: some details are
omitted for clarity.

language, we define logical memory locations representing
the state of the DOM tree, in addition to the straightforward
translation of JavaScript variables to Event variables. We
translated memory accesses to Event as follows:

e Reads and writes of JavaScript variables, object fields,
and functions were directly translated to rd or wr opera-
tions in Event. (At the lowest level, all these entities are
in fact object fields in JavaScript, simplifying the imple-
mentation.) DOM API methods were modeled as rd or
wr operations of the appropriate logical memory loca-
tions.

e Some DOM nodes have a list of event listeners for the
possible events on corresponding UI elements. Any mu-
tation of this list (e.g., via a call to addEventListener or
setting an on<X> attribute for event <X>) is translated to a
wr operation of a corresponding logical memory location
l. Firing an event, which causes execution of all attached
event listeners, is translated as rd operation on /.



e A special type of memory locations for DOM elements
is the set of all DOM node identifiers. The DOM tree
allows querying for elements by their id and such a query
is translated to a rd operation in the Event language.
Creation of an element with an id attribute or writing the
id field of a DOM object is a modification to the set of
DOM identifiers and translates to a wr operation on a
variable representing the DOM id.

JavaScript arrays are a special case of JavaScript vari-
ables. Arrays provide reads and writes from an index that
we translate to rd and wr of the corresponding index like
regular variables. Additionally, arrays provide methods
that append to the end of an array, iterate over elements,
remove an interval of elements or get its length. To han-
dle these methods, we added an additional logical mem-
ory location for the entire array. All operations that read
the size of the array or access a cells are considered reads,
while all operations that add or remove cells are consid-
ered writes of this memory location.

The example program in Fig. 7 contains accesses of the
JavaScript variables £, 1ikeLocal and lazy, the click event
handler of buttons b1 and b2, and the set of DOM identifiers.
Fig. 8 shows an execution trace for Fig. 7 with the relevant
memory accesses translated to the Event language.

Event Actions, Forks and Joins The work of Petrov et
al. [15] specified a detailed happens-before relation for the
web, with specific rules for constructs like scripts, images,
etc. Rather than instrumenting the handling of each such
construct, we exploited the fact that WebKit itself is struc-
tured as an event-driven program—by translating WebKit’s
internal event-driven structure directly to Event, we could
handle a wider variety of HTML constructs than what was
specified in previous work with a relatively small amount
of code. We can do this, because ordering constraints be-
tween events are typically enforced only by the browser.
This means that even if an external agent like a server tries
to order events, the order is likely not enforced at the client
side due to the network.

The implementation of WebKit contains event handler
code for each unit of work in rendering a web page: parsing
an HTML element, executing a script, handling user input,
etc. We translated each of these handlers to an event action in
Event. Many WebKit event actions are ordered via internal
timers: starting a timer event action u from event action ¢ is
translated to fork(t, ). Similarly, an event action ¢ starting
a network request with response event action u is modeled
as fork(t,u). We also introduce fork(t,u) where ¢ creates
a Ul element e and u handles some event on e. The trace in
Fig. 8 shows possible event actions for parsing each HTML
tag and event actions for user clicks on the two buttons from
one possible execution run.

We found that WebKit itself uses ad hoc synchronization
to order certain event actions, which we translated to Event

using the join construct to capture the induced happens-
before. Here are examples of ad hoc synchronization vari-
ables in WebKit:

1. A counter in each document for the number of child
iframe HTML documents being loaded. Each created
iframe increments this counter, while finishing the load-
ing of an iframe decrements it. A load completion event
is triggered only after this counter decreases to zero.

2. A counter in each document for the number of child
resources like images or scripts that are currently loading.
The use of this counter is similar to the iframe counter.

3. A counter in each document for the number of pending
scripts to execute.

4. A queue of the pending tags to parse.

By translating WebKit’s core event structure directly in-
stead of separately handling each HTML feature, our transla-
tion is able to cover a bigger part of HTMLS than what was
described in [15], including newer features like video and
audio tags and modification listener events. Our approach is
mostly applicable to other browser engines, as they are also
implemented as event-based systems (the event-driven struc-
ture is specified in HTMLS [5]). Minor changes to the engine
may be needed to disable optimizations that merge multiple
web-level events, as this merging may hide races. For Web-
Kit, we disabled the ability to parse more than one HTML
element in an event action.

Our modifications worked across several versions of
WebKit that we tested, and our experiments were done us-
ing SVN version 116000 of the code.? Our reasoning about
the WebKit implementation in terms of our Event language
shows the generality of our techniques. In fact, one could
imagine using our techniques to build a race detector for the
WebKit implementation, with race coverage exposing the ad
hoc synchronization we discovered manually.

5.2 Race analyzer

Our browser based on modified WebKit produces a program
trace, which is logged to a file, together with debug informa-
tion describing the types of events, JavaScript scope infor-
mation, the values of the JavaScript variables and the source
code of any executed JavaScript. Our race analyzer takes the
Event program trace augmented with the debug information
as input.

The user interface for the race analyzer is implemented
as a web server providing interactive views of the execution
trace and detected races. The user can inspect reads and
writes of any memory location in the trace, the happens-
before graph, and all corresponding JavaScript code (even
when the code was dynamically generated). For discovered
races, the Ul shows race coverage information and filters
out covered races in its default view. Initially showing only

2http://svn.webkit.org/repository/webkit/trunk



uncovered races is a sensible default, as the user can easily
identify synchronization races and avoid inspection of races
covered by synchronization (see Section 3). We shall show in
Section 6 that in practice, only a small subset of all races are
uncovered, so this default also significantly reduces triage
effort.

5.3 Race filters

To further improve the usability of EVENTRACER, we im-
plemented several filters for common race patterns specific
to web applications. These filters automatically categorize
certain uncovered races as either likely synchronization or
likely to be harmless. A user can first investigate the uncate-
gorized races, which are more likely to be harmful, and then
quickly study the filtered races to confirm that the automatic
categorization is appropriate. The automatic categorizations
are based on extensive experience inspecting thousands of
race reports across real-world web sites. It is possible for
a filter to be inaccurate, e.g., by flagging a harmful race as
likely to be harmless. However, we manually inspected many
filtered races during our experimental evaluation, and we did
not observe any inaccuracy, so we expect this to be rare in
practice.

Writing same value When a memory location has only
write-write uncovered races and the racing operations write
the same value to the variable, the races are flagged as likely
to be harmless. Web sites often have multiple scripts that
initialize a variable to the same value, and this filter captures
that pattern. The variable 1ikeLocal in Fig. 7 matches this
pattern. The £ function is executed when either button is
clicked, and thus the value 5 will be written to likeLocal
no matter which button is clicked first.

Only local reads In some cases, a JavaScript global vari-
able is essentially used as a local: any read of the variable
gets a value from a preceding write in the same event ac-
tion. In such cases, we flag races on the variable as likely to
be harmless. For these races, the user may want to fix the
code by reducing the visibility of the variable, as adding a
read without a preceding write to new code could cause a
harmful race. The variable 1ikeLocal in Fig. 7 matches this
pattern as well. The value of the variable is read only in the
same event action after it is written.

Late attachment of event handler 'We flag write-read and
read-write races on event handlers as a separate class of
races. This type of race is specific to the web and common
in sites using libraries like jQuery.? Such sites enable many
event handlers only after the page has completed some ini-
tial loading, in order to reduce perceived page load time.
This practice can lead to many race reports, since the user
can interact with a partially-loaded page. For example, if
a click handler is attached only after the page loads, user

3http://jquery.com/

clicks while the page is not fully loaded will not be pro-
cessed. While this is certainly a race, it is a common pattern
in web applications and typically viewed as an acceptable
degradation of the user experience. The click handler for the
button b1 in Fig. 7 matches this pattern: if the user clicks
b1 before the code at line 13 runs, the £ function will not
execute.

Lazy initialization When a JavaScript variable has only
one write, only one read of the value undefined (or the
value null) preceding the write in the same event action,
and multiple other reads in other event actions following the
write in the trace, we assume this variable is used as lazy
initialization. Such a variable may have races, but we assume
every read to be checking for undefined and be harmless.
This filter is only a best-effort guess that races on a variable
are harmless. In our experience, the races it caught were
always harmless, but it may hide a real bug, so the races
may merit more careful inspection. A common code pattern
for such variables is similar to the one shown for variable
lazy in Fig. 7: the racing accesses check if the variable is
initialized and only the first one initializes it.

Commuting operations Races on certain memory loca-
tions like cookie and className of DOM nodes typically oc-
cur from commuting methods like addClass, removeClass,
hasClass, etc.. We filter these races as we discovered they
are often harmless.

Race with page unload We classify variables having only
races with a memory access in the page unload event handler
separately. The harm of such races to a web application is
limited to only the unload event and any error will likely not
be visible to the user. Most of these races were in libraries,
but in cases when a developer adds logic in the unload
events, these races may be worth investigating.

5.4 Likely harmful races

We also created filters for two types of races that are likely
to be harmful; EVENTRACER automatically flags these races
as important for the user. Note that both these filters are only
applied to variables that have not already been flagged by the
filters described in Section 5.3.

Uninitialized values This filter identifies races that may
involve a use of an uninitialized location. The filter se-
lects variables v with uncovered races where for all writes
{w;}?_; of v in the trace that precede a read r, the pairs
(w;, r) are uncovered races. For races that pass this crite-
rion, we can show via Theorem 3.6 that it is possible to
build a trace such that the read r can read an uninitialized
value (since no write is ordered before the read). Such a race
is harmful when the code that performs the read does not
check for an uninitialized value. In our experimental evalua-
tion, we manually inspected races flagged by this filter, and
we found some of them to be harmful.



An example of such arace is for the variable f in Fig. 7. In
this case, a user with a slow network connection may execute
the click handler before the script is loaded and the function
f is initialized, causing an unhandled exception in the click
handler.

readyStateChange handler This filter selects variables v
with uncovered races (a, b) such that at least one of ev(a) or
ev(b) is an event handler for the readyStateChange event.
These are typically response handlers for asynchronous
“AJAX” or resource load requests, which are error-prone
due to possible wide variance in network response time. We
manually inspected races from this filter and found some of
them to be harmful.

6. Evaluation

Here we present an experimental evaluation of EVENT-
RACER, which implements the optimized race detector, cov-
erage techniques, and filters described earlier. Our evaluation
tested the following experimental hypotheses:

1. Race coverage (Section 3) and our other filters (Sec-
tion 5.3) dramatically reduce the number of races the user
must initially inspect.

2. If a site contains harmful races, those races are often
contained in the initial set of uncovered, unfiltered races
shown to the user.

3. Race detection that constructs vector clocks based on
chain decomposition (see Section 4.1.4) performs signif-
icantly better than standard vector-clock-based race de-
tection.

Section 6.1 presents a usability experiment to test the first
and second hypotheses, and Section 6.2 describes a perfor-
mance evaluation to evaluate the third hypothesis.

As in previous work [15], we evaluated EVENTRACER
on the home pages of the companies in the Fortune 100. To
automatically exercise some basic site functionality, we also
implemented an automatic exploration technique similar to
that of WEBRACER [15, §5.2.2]. The automatic exploration
performs simple actions like typing in text boxes, hovering
the mouse, etc., which can expose additional races. Auto-
matic exploration cannot deeply explore a rich web applica-
tion; in future work, we plan to integrate our techniques with
a tool like Artemis [2] to expose more races in such sites.

Note that since the Fortune 100 sites change frequently,
and we do not have the exact site versions used in the WEB-
RACER work [15], the numbers presented here cannot be
compared directly to those in the WEBRACER paper. We
have preserved and will make available the site traces used
in the current work, to enable future comparisons.

We ran our experiments on a Core i7 2700K machine
with 16GB of RAM, running Ubuntu 12.04. EVENTRACER
was implemented in C++ and compiled with GCC 4.6. We

Number of variables with races
Metric Mean Me- 90-th Max
dian | %-ile

All 634.6 461 1568 | 3460
Removed by single coverage (Definition 3.1) 581.1 419 1542 | 3389
Removed by multi-coverage (Definition 3.2) 8.2 2 30 55
Remaining with uncovered races 45.3 29 103 331
Filtering methods

Writing same value 0.75 0 3 12
Only local reads 3.42 2 8 43
Late attachment of event handler 16.7 8 41 117
Lazy initialization 43 0 11 61
Commuting operations - className, cookie 4.0 1 8 80
Race with unload 1.1 0 2 33
R ining after filters from Section 5.3 17.8 10 38 261
Uninitialized values 1.9 0 5 36
readyStateChange handler 1.3 0 2 64

Table 1. Usability metrics of EVENTRACER on the Fortune
100 sites.

fetched each website and ran our auto-exploration for 15
seconds.

6.1 Race Detector Usability

To evaluate the usability of EVENTRACER, we studied the
number and type of races reported across our benchmarks.
Here we first discuss the effectiveness of our automatic tech-
niques for reducing the number of races shown to the user,
race coverage (Section 3) and filters (Section 5.3). Then, we
present results from a manual classification of the remaining
races, including a discussion of observed harmful races and
synchronization patterns.

Automatic Techniques Table 1 presents results showing
the effectiveness of our automatic techniques for reducing
the number of races shown to the user. As is standard in race
detection work, we give the number of memory locations
that have at least one race of the provided type.

Only showing variables with uncovered races (as de-
fined in Definition 3.2 to include multi-coverage) reduces
the number of displayed variables with races by a factor of
14, from 634.6 per site on average to 45.3. Most of the re-
duction comes from races covered by a single other race, but
multi-coverage also plays a significant role in comparison to
the number of remaining races. This large reduction, along
with the guarantee that both orderings of any uncovered race
are in fact feasible (Theorem 3.6), is strong evidence for the
usefulness of race coverage in practice. Together, the filters
from Section 5.3 yield roughly another 2.5X reduction in
number of variables with races, down to 17.8 per site on av-
erage. The “Late attachment of event handler” filter is most
effective, indicating the frequent usage of this pattern on real
sites. Most of the other filters are also useful: each of them
catches more than ten races on at least one site. Note that for
some variables, multiple filters may apply.

Manual Classification We performed a manual classifica-
tion of those uncovered races that did not match the filters for
likely harmless races described in Section 5.3, and matched
our filters for likely harmful races described in Section 5.4.



There were 314 such variables with races, which we man-
ually classified as a synchronization operation, harmful, or
harmless. Table 2 summarizes the results of our classifica-
tion. Along with totals, we separately give the number of
DOM variables and JavaScript variables in each category.
Due to code obfuscation, we could not classify the races on
nine variables.

Synchronization races 178 of the variables with races
we inspected were synchronization operations, with spe-
cial logic to enforce orderings based on the variable’s value.
This large amount of synchronization in the uncovered races
further validates the utility of race coverage, as (false) races
covered by this ad hoc synchronization are completely hid-
den from the user.

For DOM synchronization races, typically the applica-
tion had logic that delayed or disabled some action if the
appropriate DOM node was present. For JavaScript syn-
chronization races, many idioms were observed. In some
cases, a conditional checked for an undefined value before
the read was performed. In other cases, the possible excep-
tion from reading an uninitialized value was caught in an
exception handler, which started a timer to retry the opera-
tion later. A third common type of synchronization was per-
formed by using data structures: for example, one event ac-
tion would store a JavaScript object in an array, and another
action would periodically execute code for each element in
the array. This type of synchronization often occurred in
commonly-used libraries like jQuery.

Harmful races We identified 75 variables with harmful
races in 21 sites. In many cases, the harm was limited to
an uncaught JavaScript exception, e.g., a ReferenceError
caused by trying to read a field from the undefined value.
Most browsers are configured not to display such exceptions,
and only inspection of the event log will show them. How-
ever, they still degrade the user experience, as they often
cause user interface glitches (e.g., a mouse click that does
nothing and must be repeated).

Using EVENTRACER, we also found more severe bugs
that were too complex to investigate using previous tools
like WEBRACER [15]. In fact, we found that some of the
races described in the work of [15, §2.3] were covered
by other harmful or synchronization races. EVENTRACER
hides many of the false positives, enabling the user to focus
on analyzing important races. Here are brief descriptions of
some new issues we discovered in various web sites:

e ford.com: a script waited until a certain DOM node
x was present, and then initialized handlers for another
DOM node y. Here, = was used for ad hoc synchroniza-
tion, which EVENTRACER exposed as an uncovered race.
However, EVENTRACER showed that the race on x un-
expectedly did not cover a race on y. Hence, there was
a “bad” interleaving of accesses to y, which we found to

cause all of the site’s menus to be non-operational until
the page was reloaded.

® verizon.com: a drop-down menu lets the user control
whether a personal or business account should be used for
login. If the user made the selection too soon, an unseen
exception was thrown, due to a race involving access to a
function defined in a later script. The user was then forced
to wait for a full page load, select the opposite account
type, and then switch back in order to continue the login.

® adm.com: we found a harmful race that may be an is-
sue in the ASPNET framework itself.* HTML forms
have an action attribute to hold the URL to which the
form data should be submitted. A form’s action at-
tribute was only URL escaped by JavaScript code in the
page’s onload handler. Hence, if a user submitted the
form before the page load completed, the submission
could fail due to invalid characters in the form’s URL. As
the relevant HTML and JavaScript code appeared to be
auto-generated by ASP.NET, this issue could be shared
by any site using the framework’s AJAX functionality.

¢ unitedhealthgroup.com: we observed a form with a
hidden token ID field that was set only once the page’s
onload event fired. If the user submitted the form before
the loading completed, the server would not see the token
ID and hence might not be able to record the user data.

e fedex.com: the page loaded two versions of the jQuery
library in a non-deterministic order! The version that
loaded last would control the relevant global variables
exposing jQuery functionality. While we could not find
any broken functionality due to this non-determinism,
using only one version of jQuery would certainly reduce
the site’s load time.

Overall, race coverage enabled us to find many harmful
bugs in these sites, despite the fact that the code in most of
the sites has already been well-tested and was obfuscated.
We believe that EVENTRACER will be even more useful
to the actual website developers who have access to non-
obfuscated versions of the code.

Harmless races We discovered 52 variables with only
harmless races (roughly 16% of those inspected), due to
application-specific semantics. Given this low false positive
rate, we believe EVENTRACER is already a very useful tool
for web developers.

6.2 Race Detector Performance

The performance evaluation of EVENTRACER consists of
two parts: the performance overhead in the modified web
browser, and the performance of the offline race analyzer.
We study these issues in turn.

4http://www.asp.net



Harmless Unknown
52 (2/50) 9

Harmful
75 (33/42)

Total | Synchronization
314 178 (59/119)

Table 2. Number of variables with races of different types,
based on manual classification. Numbers for each race type
are presented as “X (Y / Z)”, where X is the total, Y
is the number of DOM variables, and Z is the number of
JavaScript variables.

Instrumentation Overhead Our modifications of WebKit
to generate traces for race detection add some performance
overhead. JavaScript execution suffers the biggest overhead,
as we log many variable reads and writes. Furthermore, as
in previous work [15], our technique disables the JavaScript
just-in-time compiler, as the WebKit interpreter is much eas-
ier to instrument. We observed a roughly 95X slowdown
for the SunSpider benchmarks® with our instrumented inter-
preter as compared to Google’s V8 JavaScript engine run in
Chrome 25.% However, when browsing in practice, network
latency and other rendering operations often consume much
more time than JavaScript execution. In our experience us-
ing the instrumented browser, it seemed fast and responsive,
and there was no significant slowdown in the load times or
the user interface of the sites we browsed.

Race Analyzer Speed To evaluate the performance of our
offline race detector, we ran the detector using the four
different techniques for answering reachability queries on
the happens-before relation, the most costly computation
during race detection (see Section 4.1):

1. a tuned breadth-first search (BFS) of the happens-before
graph;

2. a standard vector-clock-based technique, where each
event action is given a unique thread ID;

3. vector-clock-based technique with bit-vectors;

4. our final optimized vector clocks algorithm based on
chain decomposition.

For the vector clocks used with chain decomposition, we
used 16-bit integers for each entry, and we employed SSE
instructions to speed vector clock computation. We ensured
that the integers never overflowed by modifying the chain
decomposition procedure to never produce chains with more
than 216 — 1 nodes.

Table 3 summarizes the running times for computing un-
covered races (Section 4.3) in a loaded trace and presents
some metrics over the site traces that help explain the per-
formance differences.

For each technique, we give the mean, median, and max-
imum running times across our benchmark sites. Our exper-

Shttp://www.webkit.org/perf/sunspider/sunspider.html

6 WEBRACER [15] reported a 500X slowdown for the same benchmarks.
WEBRACER did online race detection, but since EVENTRACER’s optimized
race detector usually runs in a fraction of a second, EVENTRACER’s overall
execution time for race detection is lower.

Metric Mean Median Max

Number of event actions 5868 2496 114900
Number of edges 6822 2873 122240
Number of chains 175 134 792

Connectivity algorithm Running time in seconds

Breadth-first search >22.2 >0.4 | TIMEOUT
Vector clocks w/o chain decomposition >0.068 >0.011 OOM
Bit vector clocks 0.081 0.008 3.381
Vector clocks + chain decomposition 0.043 0.007 2.395

Table 3. Performance metrics of EVENTRACER on finding
uncovered races in the Fortune 100 sites.

Metric Mean Median Max
Trace file size (uncompressed) 7.9MB 3.7MB 129.5MB
Trace file size (gzip compressed) 1.4MB 0.7MB 16.3MB

Vector clocks memory consumption

Vector clocks w/o chain decomposition | 544MB 12MB 25181MB
Bit vector clocks 33MB 1IMB 1573MB
Vector clocks + chain decomposition SMB 1IMB 171MB

Table 4. Memory consumption of different race detection
techniques.

iments show that BES is too slow to be run in practice for
some of the web sites and ran above five minutes on three of
the sites. We classified these runs as timeout, which allowed
us to only underapproximate the mean and median running
times of the algorithm. On the other hand, vector clock based
approaches tend to be very fast, but naive implementations
run out of memory.

Memory consumption In Table 4 we first show the storage
space needed for the traces of our offline analysis, which was
quite low (a maximum of 16.3MB for compressed traces).
Next, we show the memory consumption of the vector clocks
for the connectivity checks in EVENTRACER using naive
vector clocks, bit vector clocks, and vector clocks with chain
decomposition.” These algorithms store one vector clock per
node of the connectivity graph and their memory consump-
tion is proportional to the number of nodes and the width
of the vector clocks. Chain decomposition is particularly
useful for the larger tests, reducing maximum memory con-
sumption from 1573MB for bit vector clocks to 171MB. For
deeper testing of large-scale web applications, we believe the
memory reductions from chain decomposition will become
even more important.

The reported memory results are usable as a lower bound
for many existing online race detection techniques. For ex-
ample, FASTTRACK needs one vector clock per event ac-
tion to store the connectivity information like in our offline
race detector (FASTTRACK does not use chain decomposi-
tion, but can be improved to use it). This also means that the
offline nature of EVENTRACER was not a disadvantage, as
the memory needed for vector clocks is not greater than the
memory required to store a trace.

7 These numbers were computed analytically rather than measuring actual
memory consumption, enabling us to handle cases where the naive vector
clocks ran out of memory.



7. Related work

In this section, we discuss related work that is closest to ours.
The work of Petrov et al. [15] presents a happens-before re-
lation [9] for web applications and uses it as a basis for a
dynamic race detector. While their work found many races,
it suffered from two key drawbacks: the race detector could
miss races [15, §5.1], and worse, by default it reported many
infeasible races. The authors worked around the second is-
sue via ad hoc filters that reduced the number of reported
races [15, §5.3]. However, those filters hid most races on
JavaScript variables, thereby hiding the ad hoc synchroniza-
tion necessary to avoid reporting infeasible races.

FASTTRACK [4], a state-of-the art online race detector
was already discussed at various places throughout the pa-
per. Ad hoc synchronization in the form of spin-locks has
been detected in a number of multi-threaded scenarios [8,
12]. However, such techniques are often based on running a
program multiple times on a modified thread scheduler. For
web applications, modifying the thread scheduler would be
very challenging, and collecting multiple runs that manipu-
lated the UI would be laborious for testers. Shi et al. detect
patterns of harmful races [19], but they also strongly rely on
executing the application multiple times to extract invariants.

Netzer and Miller [13, 14] discuss the feasibility of races
in parallel programs. Similar to our work, they start from the
set of all races and produce a set of feasible races. However
their work has two important drawbacks: first, they cannot
always produce the actual set of feasible races — in some
cases they produce sets of tangled races such that at least one
race from each set is feasible. Second, their work produces
actual feasible races only in case the interleaving events are
single-access [14] while web event actions almost always
consist of multiple memory accesses.

Ide et al. [6] discuss the existence of web races, but pro-
pose no actual analysis. Zhang et al. [21] provide a static
analysis for some of the concurrency bugs in AJAX appli-
cations, but their technique does not handle all web races,
and it suffers from difficulties in performing a precise static
analysis of JavaScript [17].

An optimization of the vector clocks width called accor-
dion clocks is proposed in [3]. However, this approach de-
creases vector clock width only when all objects accessed
by a thread are deleted, which does not happen in web appli-
cations that typically access long-lived DOM objects.

8. Conclusion and Future Work

We have presented novel techniques for performing effi-
cient and usable dynamic race detection for event-driven
programs. Showing uncovered races improves usability
by exposing important races to the user first, particularly
those that reflect ad hoc synchronization. For efficiency,
our race detection algorithm employs chain decomposition
techniques to avoid bloating the size of key vector clock
data structures. We implemented these techniques in a tool

EVENTRACER for detecting races in web applications, and
showed that they lead to large performance and usability
improvements in an experimental evaluation.

While exposing uncovered races improves usability, our
current technique still cannot automatically determine which
races are on synchronization variables. In future work,
we plan to address this limitation, based on previous ap-
proaches [12, 18] and on static analysis techniques. We also
plan to study techniques for automatically fixing some types
of harmful races.

References

[1] AGARWAL, A., AND GARG, V. K. Efficient dependency
tracking for relevant events in shared-memory systems. In
PODC (2005).

[2] ARrTzI, S., DOLBY, J., JENSEN, S. H., M@LLER, A., AND
Tip, F. A Framework for Automated Testing of JavaScript
Web Applications. In ICSE (May 2011).

[3] CHRISTIAENS, M., AND BOSSCHERE, K. D. Accordion
clocks: Logical clocks for data race detection. In Euro-Par
(2001).

[4] FLANAGAN, C., AND FREUND, S. N. FastTrack: efficient
and precise dynamic race detection. In PLDI (2009).

[5] HTMLS specification. http://www.w3.org/TR/html5/.

[6] IDE, J., BoDIK, R., AND KIMELMAN, D. Concurrency
concerns in rich Internet applications. In EC2 (2009).

[7] JAGADISH, H. V. A compression technique to materialize
transitive closure. ACM Trans. Database Syst. 15, 4 (Dec.
1990), 558-598.

[8] KASIKCI, B., ZAMFIR, C., AND CANDEA, G. Data races vs.
data race bugs: telling the difference with Portend. In ASPLOS
(2012).

[9] LAMPORT, L. Time, clocks, and the ordering of events in a
distributed system. In ACM Operating Systems (1978).

[10] MATTERN, F. Virtual time and global states of distributed
systems. In Proc. Workshop on Parallel and Distributed
Algorithms (1989), C. M. et al., Ed.

[11] Bug 538892 - Replying to or forwarding emails on Hotmail no
longer works properly: message content is often lost. https:
//bugzilla.mozilla.org/show_bug.cgi?id=538892.

[12] NARAYANASAMY, S., WANG, Z., TIGANI, J., EDWARDS,
A., AND CALDER, B. Automatically classifying benign and
harmful data races using replay analysis. In PLDI (2007).

[13] NETZER, R. H. B., AND MILLER, B. P. Improving the
accuracy of data race detection. In PPOPP (1991).

[14] NETZER, R. N., AND MILLER, B. P. Detecting data races in
parallel program executions. In LCPC (1989).

[15] PETROV, B., VECHEV, M., SRIDHARAN, M., AND DOLBY,
J. Race detection for web applications. In PLDI (2012).

[16] POzZNIANSKY, E., AND SCHUSTER, A. Efficient on-the-fly
data race detection in multithreaded c++ programs. In PPoPP
(2003).



[17] RICHARDS, G., LEBRESNE, S., BURG, B., AND VITEK, J.
An analysis of the dynamic behavior of JavaScript programs.
In PLDI (2010).

[18] SEN, K. Race directed random testing of concurrent pro-
grams. In PLDI (2008), pp. 11-21.

[19] SHI, Y., PARK, S., YIN, Z., LU, S., ZHOU, Y., CHEN, W.,
AND ZHENG, W. Do i use the wrong definition?: Defuse:
definition-use invariants for detecting concurrency and se-
quential bugs. In OOPSLA (2010).

[20] WebKit. http://www.webkit.org/.

[21] ZHENG, Y., BAO, T., AND ZHANG, X. Statically locat-
ing web application bugs caused by asynchronous calls. In
WWW’2011 (2011).

Appendix: Proofs

Theorem 3.5. If a race R € races(m) \ uncovered(r),
then R is not an accessible race.

Sketch of Proof: Assume that a covered race R = (a, ) is an
accessible race in 7. This means that there is trace 7’ € [r],
such that b is the last operation in 77’ and a ¢ #’. Let R
be covered by {S; = (¢;,d;)};. Then d,, < b and from
condition 2 in Definition 3.3 = d,, € «’. Let us denote
a = do. We will show that for every i € [0,n], d; € =’
and d; is not the last operation of 7’. For ¢ = n, we have
shown it already.

From d; not being the last operation of 7’ and from
condition 3 (a) = ¢; € 7’. But ev(¢;) # ev(b) and because
the trace 7’ is valid, end(ev(c;)) € #’. But from ev(d;—1) <
ev(c;) and end(ev(c;)) € n’ = d;—q € 7.

From dg = a € 7'/, follows that R is not a accessible race
in . O

Theorem 3.6. Any race R € uncovered(w) is an accessi-
ble race in .

Sketch of Proof: Let R = (a,b) € wuncovered(r). For
each of the remaining races are not always after R, let their
corresponding pairs of event actions be:

X = {(ev(c),ev(d))|S = (¢,d) € races(w), S # R,bAd}

We build the smallest transitively closed relation B*, from
the set B, which joins the happens-before relation with X
(B ==X UX). We will analyze B as a directed acyclic
graph. Then we will build a consistent trace 7/, following
a topological order of B*.

First we will show that, z = (ev(a),ev(b)) & B*. Let us
assume z € B*. Ris arace = z ¢=. Then there is a path p
from a to b in B, for which at least one arc from the path is
in X and the remaining arcs are in<. Let us take the races of
arcs of p in X and put them in the set {S;}7—,. Then all the
conditions in Definition 3.2 are satisfied and {S;}?_, <« R.
This is a contradiction with R € uncovered(rw), so z ¢ B*.

From z ¢ B*, we can traverse the nodes of B* in an
order, such that we traverse b before traversing a. We will
build a trace 7’ by adding the operations from 7 in this order,
such that b is the last operation of 7. Then we need to verify
if the constructed 7’ satisfies the conditions of Definition
3.3. Condition 1 is satisfied by construction, condition 2 is
satisfied because < C B* and condition 3 is satisfied because
X C B*. Following standard semantics of operations, it can
be shown that 7/ € [P]. Then 7’ € []. But a & 7', which
means that R = (a, b) is an accessible race. O



