
Refactoring with Synthesis

Veselin Raychev
ETH Zürich

veselin.raychev@inf.ethz.ch

Max Schäfer
Nanyang Technological University

schaefer@ntu.edu.sg

Manu Sridharan
IBM T.J. Watson Research Center

msridhar@us.ibm.com

Martin Vechev
ETH Zürich

martin.vechev@inf.ethz.ch

Abstract
Refactoring has become an integral part of modern software
development, with wide support in popular integrated devel-
opment environments (IDEs). Modern IDEs provide a fixed
set of supported refactorings, listed in a refactoring menu.
But with IDEs supporting more and more refactorings, it is
becoming increasingly difficult for programmers to discover
and memorize all their names and meanings. Also, since the
set of refactorings is hard-coded, if a programmer wants to
achieve a slightly different code transformation, she has to
either apply a (possibly non-obvious) sequence of several
built-in refactorings, or just perform the transformation by
hand.

We propose a novel synthesis system which addresses
these limitations. Our system employs a recently proposed
refactoring interface, in which a refactoring is achieved via
three simple steps: the programmer first indicates the start
of a code refactoring phase; then she performs some of the
desired code changes manually; and finally, she asks the tool
to complete the refactoring.

Given the initial and modified programs, our synthesis
system completes the refactoring by first extracting the dif-
ference between the starting program and the modified ver-
sion, and then synthesizing a sequence of refactorings that
achieves (at least) the desired changes. To enable scalable
synthesis, we introduce local refactorings, which allow for
first discovering a refactoring sequence on small program
fragments and then extrapolating it to a full refactoring se-
quence.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509544

We implemented our approach as an Eclipse plug-in, with
an architecture that is easily extendable with new refactor-
ings. The experimental results are encouraging: with only
minimal user input, the synthesizer was able to quickly dis-
cover complex refactoring sequences for several challenging
realistic examples.

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Integrated environments; Eclipse

Keywords Refactoring; Synthesis

1. Introduction
Software refactoring improves the structure of existing code
through behavior-preserving transformations, themselves
called refactorings. Since it was first formally described
twenty years ago [8, 22], refactoring has become an im-
portant part of modern software development, and is a staple
of agile software development techniques such as Extreme
Programming [2].

While originally conceived as a manual activity, it did not
take long for the first refactoring tools to appear [26] that of-
fered support for automating simple refactoring transforma-
tions. Since then refactoring support has become de rigueur
in interactive development environments (IDEs) for object-
oriented languages. In particular, all major Java IDEs such
as Eclipse [4], IntelliJ IDEA [12] and NetBeans [21] come
with built-in support for many refactorings.

Recent studies, however, have shown that these refactor-
ing tools are severely underused [19, 36]: while program-
mers do refactor frequently, they perform up to 90% of refac-
torings by hand, even where tool support is available. One
major issue identified by these studies is poor discoverabil-
ity: in order to initiate an automated refactoring, the pro-
grammer has to select it by name from a menu1 or use a
corresponding keyboard shortcut, requiring the programmer
to not only know which refactoring transformations the IDE

1 In Eclipse 4.2, this menu has 23 entries.

supports but also to memorize their names. A second obsta-
cle is the complexity of the user interface for some refactor-
ings, which are controlled by complex configuration dialogs
that disrupt the programmer’s workflow.

To alleviate these problems, several researchers have pro-
posed novel user interface paradigms for refactoring tools:
Lee et al. [16] present a system where refactorings are initi-
ated by drag-and-drop gestures, whereas BeneFactor [7] and
WitchDoctor [5] are tools for refactoring “autocompletion”
that observe a programmer’s editing operations and try to
discover editing patterns suggestive of refactorings. When
such a pattern is discovered, the programmer is offered the
choice of completing the refactoring task using the built-in
refactoring tool.

These tools make it easier to apply individual refactorings
already supported by the IDE. However, many very natu-
ral refactoring transformations do not straightforwardly map
to these built-in refactorings. For example, the EXTRACT
METHOD refactoring implementations of present-day IDEs
provide no control over the set of parameters to be pro-
vided by the extracted method. As we shall discuss further
in Section 2, this means that programmers sometimes have
to perform a non-trivial sequence of auxiliary refactorings
in order for the method extraction to yield the required re-
sult. This is tedious, particularly if some refactoring late
in the sequence fails unexpectedly (e.g., due to a violated
pre-condition) and the programmer has to undo the previ-
ous steps one by one. Even discovering the right sequence of
refactorings to perform is often non-trivial, and the program-
mer may ultimately fall back to performing the refactoring
by hand.

To address this, we propose to combine a user interface
in the style of Steimann et al.’s ad hoc refactorings [32]
with a novel synthesis engine based on synthesis from ex-
amples [9]. As a result, a developer performs an automated
refactoring using the following process:

1. Click a “Start Refactoring” button, thereby indicating the
program Pi whose semantics should be preserved by the
refactoring.

2. Manually perform a few of the edits for the desired refac-
toring, resulting in a program Pm.

3. Click a “Complete” button, at which point the tool takes
as input the two examples Pi and Pm and attempts to
discover a sequence of automated refactorings that, when
applied to Pi, yields a program that includes the edits
introduced in Pm over Pi.

This refactoring interface, which we have implemented
in an Eclipse plugin called RESYNTH, provides a number of
advantages over traditional approaches where the user needs
to figure out which (sequence of) refactorings to invoke:

• The user is freed from remembering a different menu
item or keyboard shortcut for each supported refactoring;

instead, all refactorings are exposed through a simple,
unified interface.2

• Applying a transformation requiring a sequence of refac-
torings becomes much easier, as the tool discovers the
(possibly non-obvious) sequence for the user. Also, the
tool ensures that all refactorings in the sequence will suc-
ceed before applying any of them, removing the burden
of having to undo earlier refactorings if a later one fails.

• Similarly, performing a set of related refactorings where
the order is unimportant (e.g., renaming both a field and
its accessor methods) is simplified, since the refactorings
are applied as a unit.

• For a refactoring developer, adding a new refactoring no
longer requires cluttering the user interface with another
menu item.

The heart of RESYNTH is a search strategy for discover-
ing appropriate refactoring sequences based on a small num-
ber of user edits. A naïve brute-force search is ineffective
for even the smallest programs. Instead, RESYNTH takes the
following approach:

1. Program entities that were not edited by the user are
discarded to narrow the search space.

2. Over this pruned program, an A∗ search [11] is per-
formed to discover refactoring sequences, guided by a
heuristic function that minimizes edit distance and ex-
pression distance from the user edits.

3. After a solution is discovered that works for the pruned
program, RESYNTH attempts to execute the discovered
sequences of Eclipse refactorings on the full program.

While BeneFactor and WitchDoctor also infer refactor-
ings from user edits, they differ from our system in that (1)
they do not require the user to indicate a refactoring is occur-
ring and (2) they cannot perform transformations requiring
a sequence of refactorings. While (1) can be an advantage
for novice users, requiring the user to indicate the start of
the refactoring enables the tool to discover more complex
sequences, and allows for performing several independent
refactorings “atomically.”

RESYNTH is architected in a manner that eases the pro-
cess of adding new refactorings. Beyond standard refactor-
ing functionality, RESYNTH only requires that each refactor-
ing provide a successors function to enumerate the possible
ways to apply the refactoring to a given pruned program,
thereby defining the search space. Adding a successors
function is straightforward in most cases, and otherwise
refactoring implementors need not be concerned about de-
tails of the refactoring search.

To assess the effectiveness of our search strategy, we
evaluated RESYNTH on a set of synthetic benchmarks and

2 Of course, the alternative interface could also be used in conjunction with
standard menu items.

on real example refactorings collected from Stack Overflow3

and other sources. We show that our search techniques are
significantly more effective than alternate approaches, and
can handle many challenging real-world examples.

Main Contributions The contributions of this paper are:

• A new synthesis refactoring system, where the user indi-
cates the desired transformation with example edits and
the tool synthesizes a sequence of refactorings that in-
clude the edits.

• A novel technique for synthesizing refactoring sequences
via heuristic search over pruned programs.

• An implementation RESYNTH, whose architecture mini-
mizes the effort required to add new refactorings.

• An initial evaluation of RESYNTH, showing it can syn-
thesize complex refactoring sequences for real examples.

Our paper is organized as follows. Section 2 gives a de-
tailed example to motivate our techniques. Then, Section 3
presents our core search techniques in detail. Section 4 de-
tails the design and implementation of our tool RESYNTH,
and Section 5 presents our experimental evaluation. Finally,
Section 6 discusses related work, and Section 7 concludes.

2. Overview
Modern Java IDEs such as Eclipse, NetBeans or IntelliJ
IDEA offer a large number of built-in refactorings that
can be activated through a menu or a keyboard shortcut.
The precise set of supported refactorings differs between
IDEs, but usually includes a set of core refactorings such
as EXTRACT METHOD or ENCAPSULATE FIELD, many of
them originally implemented in the Smalltalk Refactoring
Browser [26].

This set of refactorings, however, is fixed, and does not di-
rectly accommodate some fairly simple transformations. As
an example, consider the method extraction problem shown
in Fig. 1, which is taken from Fowler’s well-known book on
refactoring [6]. The original program, a fragment of a class
representing an account, is given on the left. As shown in the
refactored program on the right, we want to extract lines 6
and 7 into a new method printDetails(). Crucially, how-
ever, the expression getOutstanding() on line 8 should not
be extracted into the new method, but passed as a parameter
instead.

This refactoring cannot be performed in one step using
the refactoring tools of Eclipse, NetBeans or IntelliJ, since
their implementations of EXTRACT METHOD do not permit
the programmer to control the set of parameters of the ex-
tracted method, which is instead determined automatically
by examining the program’s data flow.

The transformation can be achieved by composing two
refactorings. First, the two statements including the ex-

3 http://stackoverflow.com

pression to be passed as a parameter are extracted into a
printDetails() method:

40 private void printDetails() {
41 System.out.println("name: " + name);
42 System.out.println("outstanding: " +
43 getOutstanding());
44 }

Then, the INTRODUCE PARAMETER refactoring is applied
to the getOutstanding() call, yielding the desired result.
However, INTRODUCE PARAMETER is not widely known [36],
and, at least in Eclipse, its implementation is buggier than
more popular refactorings.

Another alternative is to decompose the refactoring into
three steps. First, we extract the expression to be passed
as a parameter into a local variable outstanding inside
printOwing(), as follows:

45 void printOwing() {
46 printBanner();
47 double outstanding = getOutstanding();
48 System.out.println("name: " + name);
49 System.out.println("outstanding: " +
50 outstanding);
51 }

Then, we extract lines 48–50 into the printDetails()
method. Since outstanding is used by, but not defined in,
the code to be extracted, it will be turned into a parameter to
printDetails(), as desired. Finally, we can apply INLINE
LOCAL to outstanding, achieving the desired program from
Figure 1(b).4

Vakilian et al. [35] found that this latter sequence of refac-
torings is quite frequently performed in practice, suggesting
that programmers often need to perform complex refactor-
ings that exceed the capabilities of current refactoring en-
gines, forcing them to manually compose several refactor-
ings in order to achieve a single transformation.

While EXTRACT LOCAL is more widely known than
INTRODUCE PARAMETER [36], its use in this situation is
highly non-obvious and indeed somewhat counter-intuitive,
since its effect is later partially undone by an inlining. This
requires the programmer to plan ahead to compensate for
limitations of the refactoring tool.

Abadi et al. [1] conducted a case study using Eclipse’s
built-in refactorings to conduct a complex refactoring, and
found that only three out of 13 uses of EXTRACT METHOD
could be automatically performed by Eclipse. They suggest
improving Eclipse’s implementation of EXTRACT METHOD
to provide more fine-grained control over the code to extract
and the parameters of the extracted method, but recent re-
search [35] suggests that such an improved (and invariably

4 In fact, this approach does not quite work in either Eclipse, NetBeans or
IntelliJ, since their implementations of EXTRACT LOCAL always put the
declaration of the extracted local variable on the line immediately preceding
the extraction site, so outstanding ends up after line 48 and has to be
moved manually before the refactoring can continue.

1 public class Account {
2 private String name;
3

4 void printOwing() {
5 printBanner();

6 System.out.println("name: " + name);

7 System.out.println("outstanding: " +

8 getOutstanding());
9 }

10

11 private double getOutstanding() {
12 //...
13 }
14

15 private void printBanner() {
16 //...
17 }
18 }

19 public class Account {
20 private String name;
21

22 void printOwing() {
23 printBanner();

24 printDetails(getOutstanding());

25 }
26

27 private void printDetails(double outstanding) {

28 System.out.println("name: " + name);

29 System.out.println("amount: " + outstanding);

30 }
31

32 private double getOutstanding() {
33 //...
34 }
35

36 private void printBanner() {
37 //...
38 }
39 }

(a) (b)

Figure 1. Example of a complicated refactoring that cannot be achieved in a single step in current IDEs; changes highlighted.

much more complex) refactoring tool would not necessarily
be very popular, since programmers seem to favor compo-
sition (of several simple refactorings) over configuration (of
one complex refactoring).

Our approach We propose a solution to this problem con-
sisting of two components. We adopt a recently proposed
interface [32] where to achieve a refactoring, a programmer
simply performs some of the desired changes by hand, yield-
ing an initial and modified program. Given these two pro-
grams, our tool employs a novel synthesis engine that au-
tomatically searches for a suitable sequence of refactorings
that performs (at least) those changes.

With our approach, a programmer could achieve the
refactoring of Fig. 1 quite easily. After indicating to the
tool that a refactoring is beginning, the user would just man-
ually replace lines 6 and 7 with the desired method call
printDetails(getOutstanding()). At this point, of course,
the program does not compile any more, since the method
printDetails has not been defined yet. But, based on this
simple edit, our tool RESYNTH can determine the sequence
of refactorings needed to refactor the original program into
the form in Fig. 1(b). Note that existing tools like Bene-
Factor [7] and WitchDoctor [5] cannot handle this example
based on the edit above: they require the user to know a
sequence of refactorings to apply.

The same interface can, of course, also be used for trans-
formations that can be achieved by a single refactoring (dis-
cussed further in Section 5). In such cases, RESYNTH has

the advantage of providing a unified interface that frees the
programmer from having to memorize refactoring names
and their associated keyboard shortcuts or menu items.

There are many real-world examples besides that of
Figure 1 in which a desired transformation can be ac-
complished by applying a non-obvious sequence of basic
refactorings. For instance, previous work [25, 32] has dis-
cussed swapping two names, e.g., transforming field declara-
tions String s1; String s2; to String s2; String s1;,
changing uses of s1 and s2 appropriately. One cannot apply
the RENAME refactoring to first change s1 to s2 or vice-
versa, since a name conflict arises. With our approach, one
simply swaps the names in the field declarations manually,
and the tool discovers a sequence of three RENAME refactor-
ings to complete the transformation: s1 to tmp, s2 to s1, and
finally tmp to s2. As with the previous example, this refactor-
ing sequence is non-obvious, but with RESYNTH, the user
is freed from worrying about the details. In Section 5, we
show that RESYNTH was able to handle several challenging
real-world examples, including these.

3. Approach
In this section, we discuss our approach to synthesizing
refactoring sequences in detail. We formalize the problem,
introduce the notion of local refactoring, describe the syn-
thesis algorithm, and prove some of its key properties.

3.1 Setting
A refactoring r ∈ R = Prog × PS ⇀ Prog is a partial
function which takes as input a program and a sequence of
parameters and returns a transformed program. The function
is partial because the input program may not satisfy pre-
conditions required for the transformation to be behavior-
preserving. The set of parameters varies among refactorings.
For example, a RENAME refactoring takes two parameters:
a program entity e to be renamed and the new name for e.
The types of parameters are not important here; they will be
discussed further in Section 4. An invocation of a refactoring
function is denoted as r(P, ps) where each argument in ps
belongs to PS.

Sequence of Refactorings We often use the term “se-
quence of refactorings” to stand for a sequence of invoca-
tions of refactoring functions. Formally, a finite sequence of
refactorings rn(P) of length n > 0 invoked with particular
arguments is defined as:

rn(P, ps1, ..., psn) = rn(...(r2(r1(P, ps1), ps2)..., psn)

The problem addressed by our synthesis procedure can
now be stated informally as follows:

Given an initial program Pi and a modified program
Pm, the goal of the synthesizer is to discover a se-
quence of refactorings Pf = rn(Pi, ps1, ..., psn)
(for some n > 0) that preserves all changes intro-
duced in Pm over Pi.

To solve this problem, a synthesizer must find both: i)
which refactorings to use and ii) which arguments to pass to
the refactorings of step i).

Key Challenge A naïve approach to the above problem
would be to apply refactorings in sequence directly to Pi,
searching for a sequence containing the changes in Pm.
Unfortunately, this approach performs poorly, due to the
need to repeatedly transform and check preconditions on the
entire input program. We observed that applying a single
Eclipse refactoring to even a small program took roughly
half a second (consistent with previous work [5]), making a
search among thousands of refactoring sequences infeasible
in practice.

While in principle the Eclipse refactorings could be fur-
ther optimized, precondition checking for many refactorings
such as renaming is an inherently global problem that needs
to take the whole program (including external libraries it de-
pends on) into account, thus limiting the potential speedup.
Furthermore, given the current architecture of Eclipse’s
refactoring engine, applying two refactorings in a row in-
variably entails changing the program at a textual level and
reparsing affected compilation units, which would further
slow down search.

The key challenge, then, is how to speed the search pro-
cess sufficiently to discover realistic refactoring sequences
in reasonable amounts of time.

Solution Outline Next, we discuss our solution. We first
discuss how to capture changes between two programs.
Then, we discuss local refactorings, an important compo-
nent of our approach. A local refactoring restricts a refactor-
ing to a program fragment, enabling the search to consider
only the changed parts of a program instead of an entire
program, which is key to scalability. We then present our
search algorithm, based on local refactorings, and finally we
discuss the overall guarantees provided by the synthesizer.

3.2 Capturing Program Change
We define T (P) to be the abstract syntax tree (AST) of
program P . For programs with multiple files, we create one
tree with a root node that joins the ASTs of all files. Given
trees T1 and T2, we define the following tree operations:

• T1 \ T2 is a tree where each full path in T1 which does
not occur in T2 is kept.

• T1 ⊆ T2 is true iff every rooted path in T1 is a rooted
path in T2.

A rooted path is a path from the root of tree T to any node
in T , and a full path is a rooted path which ends in a leaf.

A program change is a pair (ci, cm) where ci is a subtree
of T (Pi) and cm is a subtree of T (Pm). Intuitively, (ci, cm)
means that the tree ci from T (Pi) was changed to the tree
cm of T (Pm). In terms of the previously-defined tree opera-
tions, (ci, cm) = (T (Pi) \ T (Pm), T (Pm) \ T (Pi)).

A program Pf is said to preserve a change (ci, cm) if
cm ⊆ T (Pf). Note that ci and cm need not be syntactically-
valid program ASTs since they may be missing subtrees that
did not change between Pi and Pm.

Example Consider the two expressions Pi = x∗y+7 and
Pm = f() + 7, whose ASTs are shown in Fig. 3. As defined
above, ci is the tree x∗y+ and cm is the tree f()+, illustrated
as dashed circles in the figure. In this example, neither ci nor
cm are well-formed ASTs, since they miss the right-hand
operand of +, which is identical in both programs.

In what follows, we write P for T (P) to avoid notational
clutter. So for instance, a change (ci, cm) is written as (Pi \
Pm, Pm \ Pi) and preservation as cm ⊆ Pf .

Now that we have defined the notion of a program
change, we can re-state our goal formally:

Given an initial program Pi and a modified program
Pm, the goal of the synthesizer is to discover a se-
quence of refactoring invocations (for some n > 0)
Pf = rn(Pi, ps1, ..., psn) such that cm ⊆ Pf .

3.3 Local Refactoring
The concept of a local refactoring is key to the practicality
of our synthesis approach. A local refactoring enjoys the

Pi

ci cm

Pm

r

𝑛

Pi

ci cm

Pm Pf

Pi

ci cm

Pm Pi Pm

0. Initial Input 1. Extract Change 2. Synthesize Local
Refactoring Sequence

3. Extrapolate to a Sequence
of Full Refactorings r

𝑛
 r 𝑛

r

𝑛

r 𝑛

Figure 2. Synthesis Steps

*

+

AST of x * y + 7

x
y 7

f()

+

AST of f() + 7

7

ci

cm

Figure 3. Two ASTs and the change (ci, cm) between them. The
change is captured with dotted lines.

following benefits: i) it can operate on a small portion of
the program instead of the entire program; ii) it can perform
fewer pre-condition checks that those performed by a full
refactoring; iii) it works directly on trees and hence does not
need to parse and generate code.

For a given refactoring r, we denote a corresponding local
refactoring as rl. A local refactoring rl is defined as follows:

rl : Tree× PS ⇀ Tree

That is, rl is a partial function which takes as input a
tree, a sequence of parameters and returns a tree. Similarly
to the full refactoring r, the function is partial because the
input may not always satisfy certain pre-conditions required
for the function to fire. The difference from the definition
of a full refactoring is the use of trees instead of programs.
Sequences of local refactorings are defined similarly to se-
quences of full refactorings defined earlier.

Extraction Function Given an invocation of a local refac-
toring, we often need to obtain a corresponding invocation of
a full refactoring. Therefore, for each local refactoring func-
tion rl, we associate a corresponding extraction function:

µrl : PS → PS

Then, given a local refactoring invocation rl(t, ps), the
function µrl(ps) computes a new sequence of arguments ps′
to be passed to the full refactoring r. Typically µrl is the
identity function, but we allow each implementation of a
local refactoring to decide what function it needs.

For a local refactoring to be useful in synthesis, it needs
to satisfy the following condition w.r.t a full refactoring.

Definition 3.1 (Correct Local Refactoring). A local refac-
toring rl is correct w.r.t its corresponding full refactoring r
iff ∀P ∈ Prog, f ∈ Tree, ps ∈ PS:

f ⊆ P ∧ f ′ = rl(f, ps) ∧ P ′ = r(P, µrl(ps))
⇒ f ′ ⊆ P ′

P

f f’

P’

r

r

Figure 4. Lo-
cal refactoring
correctness

Fig. 4 gives the intuition for the
definition: a local refactoring is cor-
rect w.r.t. a full refactoring unless
both are enabled and the result of
the local refactoring is not included
in the result of the full one. Note
that depending on the definition of
the extraction function µ there could
be many different local refactorings
rl that are correct with respect to its
corresponding full refactoring r.

3.4 Modular Synthesis
We next describe the three steps of the synthesis process.
These steps are also illustrated in Fig. 2.

Step 1: Extract Change The result of this step is a program
change (ci, cm) = (Pi \ Pm, Pm \ Pi) (as defined in Sec-
tion 3.2).

Since we need only the change, we do not need to ex-
plicitly construct the entire ASTs Pi and Pm. Indeed, if we
compare the trees of Pi and Pm and eliminate the common
parts between them, this would eliminates classes, meth-
ods, type definitions, statements and expressions that remain
unchanged between the two programs. This means that for
large programs, we need not compare unmodified compila-
tion units. Then, we construct the ASTs P ′i and P ′m which
include only the modified compilation units and compute the
program change by using the formula (P ′i \ P ′m, P ′m \ P ′i).

Step 2: Synthesize Local Refactoring Sequence We next
describe how we compute a local refactoring sequence. The
goal of this step can be stated as follows:

Given a program change (ci, cm), the goal of the syn-
thesizer is to discover a sequence of local refactoring

invocations t = rnl (ci, ps1, ..., psn) (where n > 0)
such that cm = t.

We assume that at each step in the search, there is a finite
set of (refactoring, input) pairs that apply to the current tree.
Some work may be required to compute this finite set, as
refactorings can have unbounded inputs (like the new name
input for RENAME); we describe how our implementation
handles this issue in Section 4.

A naïve solution to our search problem would be to use
breadth-first search, which will find the shortest possible
refactoring sequence (assuming the aformentioned finitiza-
tion). However, our experiments indicate that such a search
rarely scales beyond sequences of more than four refactor-
ings, as the search space grows exponentially in the length
of the desired sequence.

Instead, we employ an A∗-based search [11]. A∗ itera-
tively computes a distance function d from the initial tree ci
to every other generated tree. Our distance function is sim-
ply the length of the current (partial) refactoring sequence.
To speed up the search, A∗ also uses a heuristic function h
that estimates the distance from each tree to the target tree
cm. At every step, the tree t with minimal d(ci, t) + h(t) is
processed. The “successors” of t, i.e., the results of applying
all possible local refactorings to t (a finite set, as discussed
above), are added to the set of candidates, and the search
continues.

Heuristic functions First, we define a correct heuristic
function.

Definition 3.2 (Correct Heuristic Function). A heuristic
function is correct if it satisfies the following properties:

• ∀t ∈ Tree, h(t) ≥ 0, and
• If t = cm then h(t) = 0

We propose the following correct heuristic functions:

1. h1(t) is the edit distance between t and cm: this is the
minimum number of node renames, leaf node inserts or
leaf node deletes required to get to the tree cm from the
tree t.

2. h2(t) is the expression distance between t and cm: this
is the number of program expressions present in one of
the trees which are not present in the other one. This
function ignores parts of programs which are not valid
expressions. For example the statement x=y+1 consists of
the expressions x=y+1, x, y+1, y and 1. If t consists of
the statement x=y+1 and cm of x=z+1, then h2(t) = 6,
because t contains x=y+1, y+1 and y which are not present
in cm, and cm contains x=z+1, z+1 and z which are not
present in t.

A consistent heuristic function is a correct function which
also satisfies the property ∀t1, t2, h(t1) ≤ d(t1, t2) + h(t2).
If a consistent heuristic function is provided, the A∗ algo-
rithm will always find the shortest possible sequences [11].

However, building such a heuristic function is dependent
on the available local refactorings and hence would require
change each time a new local refactoring is added.

The heuristic function that we choose is not consistent,
but is correct, which is sufficient for our optimality guaran-
tees (discussed later) and does not affect the correctness of
the produced local sequence. The heuristic function is used
only to improve the speed of the search and decrease the
number of explored trees. In our implementation, we con-
structed several heuristic functions by building different lin-
ear combinations h(t) = a1h1(t) + a2h2(t) and tuning the
corresponding constants a1 and a2. Section 5 presents results
with different choices for a1 and a2.

Step 3: Extrapolate to a Sequence of Full Refactorings
Once a local refactoring sequence rnl (ci, ps1, ..., psn) is
computed, the final step is to extrapolate from that sequence
and obtain a sequence of full refactorings. The sequence
of full refactorings is obtained by applying the extraction
function to each local refactoring in the local refactoring se-
quence. That is, for the full refactoring sequence we obtain
rn(Pi, µrl1

(ps1), ..., µrln
(psn)). However, rn may not ac-

tually be feasible, since local refactorings may ignore some
of the pre-conditions which are checked in the sequence of
full refactorings. If the sequence of full refactorings is infea-
sible, our algorithm searches for a different local refactoring
sequence and repeats the process. Otherwise, we obtain the
desired program Pf (from the sequence of full refactorings).

3.5 Guarantees
We next discuss the two main guarantees provided by our
approach. First we show that the synthesizer produces a
refactoring sequence which satisfies our objective (that is,
correctness). Further, we also prove a property of optimality.

The fact that our synthesizer achieves the correctness
objective is also illustrated in Step 3 of Fig. 2, that is, with
cm ⊆ Pf . We prove this below.

Lemma 3.3 (Correctness of Synthesis). For any sequence
of full refactorings Pf = rn(Pi, ps1, ..., psn) produced by
the synthesizer, cm ⊆ Pf .

Proof. Let rnl (ci, . . .) be the local refactoring sequence pro-
duced in Step 2 of the algorithm, from which the given full
refactoring sequence rn(Pi, . . .) was obtained. Here we do
not list the arguments to avoid clutter and use . . . instead.

The proof proceeds by induction. For the induction
hypothesis assume that for some k < n, rkl (ci, . . .) ⊆
rk(Pi, . . .) where the sequence rk(Pi, . . .) is obtained from
the sequence rkl (ci, . . .). We need to prove that the tree
rk+1
l (ci, . . .) ⊆ rk+1(Pi, . . .). From the requirement that

each local refactoring is correct (Definition 3.1) it fol-
lows that rlk+1

(rkl (ci, . . .), . . .) ⊆ rk+1(r
k(Pi, . . .), . . .).

Then, using induction we have proven that rnl (ci, . . .) ⊆
rn(Pi, . . .). Step 2 of the local refactoring synthesis termi-

nates only if rnl (ci, . . .) = cm. Hence, by substitution it
follows that cm ⊆ rn(Pi, . . .) proving our objective.

Next, we define a notion of optimality:

Definition 3.4 (Optimality). Pf = rn(P, ps1, ..., psn) if:

• n = 1 and P 6= Pf , or
• n > 1 and for all i, 0 ≤ i < n− 1, ro ∈ R, pso ∈ PS, it

is the case that ro(ri(P, ps1, ..., psi), pso) 6= Pf .

Intuitively, the above definition of optimality says that
we cannot replace a suffix of the refactoring sequence with
another refactoring and obtain the same result. For example,
a sequence of two rename refactorings where the first one
renames method A to B and the second one renames B to
C is not optimal, because that sequence can be replaced
by a single refactoring that renames A directly to C. A
consequence of the above definition is that if a sequence is
optimal and correct, it means that no prefix of the sequence
is correct. For example, if the sequence of refactorings a ·b ·c
is optimal and correct, it means that neither a nor a · b can
solve the problem, that is, no shorter correct prefix exists.

Lemma 3.5 (Optimality of Synthesis). A refactoring se-
quence rn(P, ps1, ..., psn) produced by the synthesizer is
optimal if for all i, 1 ≤ i < n, µrli

is a bijection.

Proof. First, we will show that the local refactoring se-
quence produced by A∗ is optimal. If the sequence cm =
rnl (ci, ps1, ..., psn) was not optimal, then ∃j, 1 ≤ j < n− 1
and a local refactoring rlo with parameters pso ∈ PS,
such that rlo(r

j
l (ci, ps1, ..., psj), pso) = cm. Let cP =

rjl (ci, ps1, ..., psj). Because cm = rlo(cP , pso), cm is a
successor of cP . cP was processed in A∗ before cm and its
computed distance function is d(ci, cP) = j. Because all
successors of cP are added when cP is processed and cm
is a successor of cP , then n = d(ci, cm) ≤ j + 1, which
means j ≥ n − 1, which contradicts the non-optimality of
rnl (ci, ...).

Next, assume that rn(P, ps1, ..., psn) is produced by
using µrli

(i ∈ [1, n]) from rnl (ci, ps1, ..., psn) and is
not optimal. This means that ∃j, 1 ≤ j < n − 1 and
a refactoring ro ∈ R with parameters pso ∈ PS, such
that ro(rj(P, ps1, ..., psj), pso) = Pf . Because for all
i, 1 ≤ i < n, µrli

is a bijection, we must be able to ob-
tain ro(r

j(P, ps1, ..., psj), pso) from a local sequence
rlo(r

j
l (ci, ps1, ..., psj), pso) = cm, but this contradicts to

the optimality of rnl (ci, ps1, ..., psn).

Our optimality guarantee shows that the sequence of
refactorings which we produce cannot be trivially shortened.
This is important as it ensures that we do not produce redun-
dant or unnecessary steps and that our diverse solutions are
not trivially reducible to the same solution.

Example Let us illustrate the steps described in Fig. 2 on
the simple example in Fig. 5. For readability, the example
contains only a single refactoring. Here, the user provides
an initial program Pi that computes the area of a triangle
using Heron’s formula. The variable T stores the perimeters
divided by two and then the square of the area is computed
in s. Assume that the user wants to rename the variable T to
p by changing some places where T is mentioned to p. The
changes are in the program Pm (Pm does not compile).

Given Pi and Pm, in step 1 the algorithm extracts the
change and produces the two trees ci and cm. In step 2, a
local refactoring sequence is synthesized. In this example,
the sequence consists of a single local rename. That is, only
the occurrences T in the tree ci have their names changed to p
resulting in the tree cm. In step 3, the discovered local refac-
toring sequence is applied on the full program. As a result,
Pf is a program where all occurrences of T are renamed to
p. Note that only in this step, we can check if the rename is
actually feasible. For instance, had the name p already been
used as a name of another variable, then this step would fail.

When the rename refactoring is implemented as a local
refactoring, it does not perform the check that the new name
(e.g. p in our example) does not conflict with names outside
of the local tree, but this check is performed in the full refac-
toring. Indeed, if we find a local refactoring sequence and
its corresponding full refactoring sequence succeeds, then as
shown earlier, the edits performed by the user are preserved
(Lemma 3.3) and that the produced sequence cannot be triv-
ially shortened (Lemma 3.5).

4. Implementation
We have implemented the approach from Section 3 in a tool
called RESYNTH. The tool is built as a plug-in for Eclipse
4.2 [4]. Here we discuss how we designed RESYNTH to
minimize the work needed to add new refactorings to the
tool, and we present other salient implementation details.

4.1 Architecture
RESYNTH consists of a core refactoring search engine that
invokes individual automated refactorings through a simple,
uniform API. Beyond the standard functionality required of
an automated refactoring (i.e., the ability to apply the refac-
toring to a program and detect pre-condition violations),
RESYNTH also requires that each full refactoring imple-
ments its corresponding local refactoring as described ear-
lier. Recall that each local refactoring takes a number of ar-
guments as input. Conceptually, having an external search
process choose those arguments violates modularity, as the
search engine would need to know the meaning of each in-
dividual refactoring (in order to chose suitable arguments).
Therefore, we require the developer to define a successors
function associated with that local refactoring. The search
engine simply invokes the function successors on all avail-
able refactorings to enumerate the search space.

Pi :
float T, s;
T = (a+b+c)/2
s = T*(T-a)*(T-b)*(T-c);
return Math.sqrt(s);

ci :
=T*(T-)*

Pm :
float T, s;
T = (a+b+c)/2
s = p*(p-a)*(T-b)*(T-c);
return Math.sqrt(s);

Pf :
float p, s;
p = (a+b+c)/2
s = p*(p-a)*(p-b)*(p-c);
return Math.sqrt(s);

cm :
=p*(p-)*

0. initial input: user does partial rename

3. perform the sequence (rename T to p) on the full program

2. synthesize sequence: local rename T to p

1. compute ci = Pi \ Pm ⇒ ci ⊆ Pi and cm = Pm \ Pi ⇒ cm ⊆ Pm

cm ⊆ Pf by Lemma 3.3

Figure 5. Example of synthesizing a refactoring sequence. Initially (stage 0), the user performs part of the rename (the user
change is highlighted in both programs). Then ci and cm are computed (stage 1). Then, a sequence of one local rename is
discovered (stage 2). Finally, the rename is applied to the full program (stage 3).

Similar to a local refactoring, the successors function
takes as input a tree. However, it produces a set of trees as
output, by invoking the corresponding local refactoring with
a set of possible arguments on the input tree. More formally,
the successors function takes two parameters as input: i)
the tree Ti representing the current local search state to be
explored from, and ii) the target tree cm (see Section 3.2).
Given these parameters, successors must return a finite set
of pairs (To, args), where To is a successor tree obtained by
applying a local refactoring to Ti with arguments args (e.g.,
the original and new names for a RENAME refactoring).
We keep the set of arguments args in the returned pair in
order to compute the full local refactoring sequence when
the target tree cm is reached.

The minimal additional functionality that RESYNTH re-
quires of local refactorings makes adding new local refactor-
ings to RESYNTH relatively easy. In particular, refactoring
implementors need not concern themselves with details of
how the search space is explored; this aspect is handled en-
tirely within the core engine, using the techniques described
in Section 3.4. Instead, they only need to specify what is the
space to be searched, via the successors function.

Certain decisions made within the successors function
of each refactoring may require some tuning. For refactor-
ings with unbounded inputs (e.g., RENAME, which can take
an arbitrary string as a new name), there can be an infinite
number of successors for a given tree. In such cases, the
refactoring implementor must decide what finite subset of
the possible successors should be returned by successors
(discussion of how our implemented refactorings handle
this issue is described in Section 4.2). The amount of pre-
condition checking to be performed within successors is
also left to the refactoring implementor. In our experience,
we found that performing aggressive pre-condition checking
during successor computation was worthwhile, to reduce the
size of the search space and to discover violations cheaply
during local refactoring whenever possible.

To implement local refactorings efficiently, the input trees
to successors include symbol information for all names,
e.g., whether a name references a local variable, a field, a
method, or some other entity. This information is useful dur-
ing local pre-condition checking inside refactorings, e.g., to
detect name conflicts. The initial information is computed
from program Pi, and each refactoring must preserve the in-
formation appropriately for each successor tree it produces.

To further simplify the task of implementing successor
functions, we provide utility functions that operate on trees
and perform the following basic modifications:

1. Replace all occurences of a given symbol by a new tree.

2. Replace a node of the tree by a new subtree.

3. Insert a new statement in a tree.

4. Delete a statement from a tree.

Note that our trees are immutable, so these modifications ac-
tually produce new trees. These utilities were used across the
refactorings we have implemented thus far, and we believe
they will be useful for implementing other refactorings as
well.

We now briefly compare our architecture to that of Witch-
Doctor [5]. Like RESYNTH, WitchDoctor also aims to make
it easy to integrate new Eclipse refactorings into its search.
To support a new refactoring in WitchDoctor, its effects have
to be described using declarative rules that match changes in
the AST. While this allows more high-level specifications
than our successors function, it requires the AST result-
ing from the refactoring to be known already. This is true in
WitchDoctor, where only a single refactoring application is
detected at a time, but not in RESYNTH, where a refactoring
may create an intermediate AST that is further changed by
other refactorings before resulting in the final AST. Our ap-
proach thus is more powerful, but requires a bit more work
to integrate a new refactoring.

4.2 Implementation Details
RESYNTH currently includes implementations of successors
functions for RENAME, INLINE METHOD, EXTRACT METHOD,
INLINE LOCAL, and EXTRACT LOCAL.5

Together, the refactorings above covered many of the in-
teresting refactoring sequences we observed in real-world
examples. Similar to the WitchDoctor system [5], our refac-
torings currently rely on underlying Eclipse refactoring im-
plementations to perform full refactorings. As discussed in
previous work [5], the Eclipse refactorings have not been en-
gineered to run quickly in scenarios like these and our exper-
iments confirm that each Eclipse refactoring needs around
half a second to run. In a from-scratch implementation, more
code could be shared between the lightweight local refactor-
ings and the full refactoring, and global pre-condition check-
ing could be optimized in a manner that could speed up the
overall search.

As discussed in Section 4.1, our refactoring implemen-
tations are required to finitize a potentially-infinite set of
successors in their successors functions. For RENAME, we
limited the set of new names for an identifier to the name
present at the same tree node in the final tree cm or one ad-
ditional fresh temporary name. The temporary name is use-
ful for cases where the refactoring sequence requires names
to be swapped. Because multiple name swaps can be com-
posed sequentially, one temporary name is sufficient. The
EXTRACT LOCAL and EXTRACT METHOD refactorings al-
ways use a deterministically-generated name for the new lo-
cal variable or method: if needed, a subsequent RENAME
refactoring can used to match the user’s desired name.

RESYNTH contains around 3100 lines of Java code, the
majority of which is the engine, the plugin and the evaluation
code. Only 750 of the code lines are the local refactorings.

Example We briefly illustrate the work needed to add
the INLINE LOCAL refactoring. First we implement the
successors function. Recall that the successors function
takes a tree Ti and returns a finite set of pairs (To, args).
For the INLINE LOCAL refactoring, each local variable dec-
laration v with an initializer expression e in Ti produces one
successor tree. Since Ti is a finite tree, the number of suc-
cessors is finite. Each successor tree is computed as follows:

1. Let s be the resolved symbol of the variable v. First, we
replace all nodes in Ti that resolve to the symbol s with
the expression e. This replacement is in fact done via a
utility method provided by RESYNTH.

2. Second, we delete the statement that declared the vari-
able.6

5 We also extended Eclipse’s implementation of this refactoring with an
additional parameter that determines the position at which to declare the
new local variable to avoid the problem mentioned in Section 2.
6 Java allows several variable declarations per statement, but our local trees
use slightly modified ASTs where each variable declaration is a separate
statement.

Then, the produced tree is one successor To of Ti and
the set of corresponding arguments args to To is only the
variable v.

When we need to execute the full refactoring, we are
given a program P , such that Ti ⊆ P and the arguments
of the local refactoring args = v. To execute the full refac-
toring, all we need to do is find the AST node of the variable
declaration v in P , and to call the InlineTempRefactoring
Eclipse refactoring with this AST node as a parameter.

4.3 Limitations
Our current prototype has several limitations. Currently, we
do not formally prove that our local refactorings perform
edits that are consistent with the full Eclipse refactorings.
Rather than verifying each local refactoring separately, in
the future, we envision that the full refactoring is imple-
mented in a way which enables one to derive a correct-by-
construction local refactoring from it.

Also, some of our local refactorings do not currently han-
dle the whole functionality of the full refactorings (for the
proof-of-concept, we focused on the most common cases).
For example, our local INLINE METHOD refactoring does
not inline statements that are outside of the local tree. Due to
this limitation, in some test cases, RESYNTH does not find
the desired refactoring sequence, but finds a similar alter-
native one. This limitation can be avoided if the user edits
include the deletion of the inlined function.

5. Evaluation
In this section, we present an initial evaluation of the
RESYNTH tool. We first illustrate simple edits that we
successfully used to perform individual refactorings with
RESYNTH. We then show that RESYNTH was able to syn-
thesize complex refactoring sequences required for several
real-world examples. Furthermore, we show that the search
strategy used by RESYNTH performed better than alternate
strategies, both on real examples and on a synthetic bench-
mark suite.7 Finally, we performed a small user study to
see how programmers like the basic idea of synthesis-based
refactoring, and to obtain feedback on RESYNTH and sug-
gestions for improvements.

5.1 Individual Refactorings
As discussed in Section 4, RESYNTH currently includes im-
plementations of five refactorings that are commonly imple-
mented in modern IDEs. Since they are frequently used,
IDEs often make these refactorings easy to invoke; e.g.,
Eclipse assigns each of them a direct keyboard shortcut.
Nevertheless, RESYNTH provides an advantage when ap-
plying these refactorings individually, as they can all be
invoked through a uniform interface. We confirmed that

7 All results were obtained on a 64-bit Ubuntu 12.04 machine with a 4-core
3.5GHz Core i7 2700k processor and 16GB of RAM, running under Eclipse
4.2 with a 4GB maximum heap.

Example steps Source
ENCAPSULATE DOWNCAST 3 literature [6]
EXTRACT METHOD (advanced) 4 literature [6]
DECOMPOSE CONDITIONAL 6 literature [6]
INTRODUCE FOREIGN METHOD 2 literature [6]
REPLACE TEMP WITH QUERY 3 literature [6]
REPLACE PARAMETER WITH METHOD 3 literature [6]
SWAP FIELDS 3 literature [32]
SWAP FIELD AND PARAMETER 3 literature [25]
INTRODUCE PARAMETER 6 Stack Overflow9

Table 1. Realistic examples used to test RESYNTH.

RESYNTH could successfully perform individual refactor-
ings when given the following edits (performed between
pressing the “Start” and “Complete” buttons):

Rename An entity x (method, field, or local variable) can be
renamed by editing the declaration of x or any reference
to use the new name.

Inline Local A local variable can be inlined simply by delet-
ing its declaration.

Inline Method Similarly, a method m can be inlined at all
sites by deleting m.

Extract Local To extract an expression e into a local x, one
simply replaces e with x.

Extract Method With Holes To extract an expression e
into a new method m, the user can replace e with an
invocation of m, where the invocation includes the de-
sired parameters for m. The final k statements in m can
be extracted in a similar fashion.8 Note that, as described
in Section 2, this refactoring is more general than the
standard EXTRACT METHOD, as it gives the user very
fine-grained control over which expressions to pass as
arguments to m. Hence, a refactoring sequence may be
required to handle these edits.

Of course, a developer must learn that the edits outlined
above will accomplish the desired refactorings before she
can use them. However, we believe the edits are fairly intu-
itive, as they are a subset of the edits required to perform the
refactorings manually. The simplicity of the edits, along with
having a uniform interface instead of separate menu items /
keyboard shortcuts for each refactoring, could ease the pro-
cess of applying these refactorings in practice.

5.2 Refactoring Sequences
Benchmarks To test RESYNTH’s effectiveness for synthe-
sizing refactoring sequences, we collected a set of examples
that require a non-trivial refactoring sequence to achieve the

8 We have not yet implemented support in our local refactoring for extract-
ing multiple contiguous statements from the middle of a method.
9 http://stackoverflow.com/questions/10121374/
referencing-callee-when-refactoring-in-eclipse

user’s desired transformation. The examples are listed in Ta-
ble 1, along with information on where the example was ob-
tained. The first five examples are transformations presented
in Fowler [6] that are not implemented in Eclipse, but can
be accomplished via a sequence of the refactorings we have
implemented. We also include two examples of name swap-
ping refactorings that have appeared in the literature [25, 32],
each of which requires a non-obvious introduction of a tem-
porary name in the refactoring sequence. Finally, the INTRO-
DUCE PARAMETER example, found online, can be achieved
via a complex sequence of six of our implemented refactor-
ings. While Eclipse provides an implementation of INTRO-
DUCE PARAMETER, it fails to handle this example. The EX-
TRACT METHOD (advanced) and SWAP FIELDS examples
were previously discussed in Section 2.

Four other examples from Fowler’s book could be com-
posed from additional Eclipse refactorings for which we
have not yet implemented local refactorings.

We also generated a suite of random benchmarks to per-
form further stress testing of RESYNTH, as follows. For each
benchmark, we first generated a Java class C containing a
sequence of static field declarations followed by a sequence
of static methods. Each static method returns a random ex-
pression e, generated by using binary operators to combine
constants, local variable and field references, and method in-
vocations up to some depth. Given C, we then generated an
edited version C ′ by performing a random sequence of edits
like those described in Section 5.1 to induce individual refac-
torings. Each (C,C ′) pair is a benchmark that tests whether
RESYNTH can discover a sequence of refactorings on C that
preserves the edits in C ′. For our experiments, we generated
100 such benchmark inputs, with five fields, five methods,
and expression depth of three for C, and two random edits
to produce C ′. We found these parameters to create bench-
marks that were somewhat more challenging than our real
examples (see below), while still remaining realistic. All of
our benchmarks (real and synthetic) are available online at
http://www.srl.inf.ethz.ch/resynth.php.

Success Rate Table 2 shows results from applying RESYNTH
to our real-world and synthetic benchmarks. RESYNTH suc-
cessfully generated a refactoring sequence for all but two of
the real-world examples and for 84% of the synthetic exam-
ples. We bounded the search to a maximum of 20,000 trees
for these results; we explore different bounds shortly. From
each explored tree, we run the successors function, which
returns multiple successor trees and effectively explores a
higher number of refactorings than the number of trees.

On average applying a full Eclipse refactoring takes about
0.5 seconds and as we explore thousands (1296 for our real
world tests) of refactorings in order to discover the desired
sequence, had we performed the search with full refactorings
instead of local refactorings, the process would have taken at
least 10 minutes, clearly an undesirable response time when
performing interactive edits.

Dataset
Metric Real Synthetic
Number of tests 9 100
Avg. number of trees searched 87 3752
Avg. number of successors in a search 1296 105310
Avg. search time 0.014s 1.629s
Avg. Eclipse refactoring time 2.953s 1.654s
Refactoring sequence length

1 refactoring 0 2
2 refactorings 1 45
3 refactorings 5 7
4 refactorings 1 15
5 refactorings 0 3
6 refactorings 2 2
7 refactorings 0 9
8 refactorings 0 0
9 refactorings 0 1
Failure to find sequence

after 20000 searched trees 0 16

Table 2. Results for our refactoring sequence search. The
A∗ heuristic function weights (see Section 3.4) were a1 =
0.125 and a2 = 0.25.

The two real-world examples for which RESYNTH did
not find the sequence from Fowler’s book were ENCAP-
SULATE DOWNCAST and REPLACE PARAMETER WITH
METHOD. This is due to a limitation (see Section 4.3) in
our successors function for INLINE METHOD. It did, how-
ever, find another valid refactoring sequence that matches the
same edits.

As shown by the mean search time and mean number
of trees searched, the synthetic examples were significantly
more challenging than the real-world examples on average.
Also note that the time required to apply the full Eclipse
refactorings after the sequence was discovered was roughly
equal to the entire search time for synthetic benchmarks,
and much larger than the search time for real examples,
indicating the need for local refactorings.

Out of the 16 examples that we fail to solve, nine re-
quire minimum 11 steps to accomplish, four tests require
minimum 9 steps and three tests require minimum 7 steps.
These are examples where the A∗ search would need to ex-
plore more than 20000 trees until it can find a refactoring
sequence. Overall, the scalability results for our technique
are quite encouraging.

Table 3 shows how our success rate on synthetic bench-
marks is affected by the search bound. Increasing the search
space leads to a slightly lower failure rate, but it also sig-
nificantly increases the average search time. Further testing
with users is required to discover an appropriate bound in
practice.

Alternate Search Strategies We tested alternate strategies
for searching for refactoring sequences by tuning the coeffi-
cients for the heuristic function h(t) = a1h1(t) + a2h2(t),

Metric Search space limit (# trees)
20,000 100,000 500,000

Num. failed tests 16 15 9
Avg. number of searched trees 3752 15900 64392
Avg. search time 1.629s 7.802s 34.473s

Table 3. Success rate on synthetic benchmarks with differ-
ent search bounds. Tested with a1 = 0.125 and a2 = 0.25.

described previously in Section 3.4. Note that setting a1 = 0
and a2 = 0 disables the heuristic function, making the A∗

search perform a straightforward breadth-first search.
Results for different values of a1 and a2 with a search

budget of 20,000 trees appear in Table 4. The a1 and a2 val-
ues we chose for our other experiments are in bold, along
with the best values in the other columns. The naïve breadth-
first search (a1 = a2 = 0) fails for 2 of the real examples and
32 of the random tests, corresponding to the tests requiring
four or more refactoring steps. A linear combination of h1
and h2 performs better than using each of the heuristic func-
tions alone, for both real examples and the synthetic tests. In
RESYNTH, we selected a1 = 0.125 and a2 = 0.25 as these
values had best results on the real tests and close to the best
results on the synthetic tests.

5.3 User Study
Although RESYNTH is currently a research prototype and
somewhat unpolished, we conducted a small, informal user
study to gauge how useful programmers find the concept of
refactoring with synthesis, and to get some feedback on how
to improve our tool.

We recruited six participants: two undergraduate stu-
dents, three graduate students, and one professional. All of
the participants had prior experience with Java programming
(between one and five years), and all of them were familiar
with Eclipse. One of them was a proficient user of Eclipse’s
built-in refactoring tools, while the other participants had
little to no experience with tool-supported refactoring.

After a brief demonstration of RESYNTH, we gave each
participant a set of three refactoring tasks based on examples
from Fowler’s textbook [6], and asked them to complete the
tasks using either RESYNTH, Eclipse’s built-in refactorings,
or manual editing.10 For one of the tasks (Task 3), RESYNTH
cannot, in fact, find the desired solution, but comes up with
a slightly different solution.

Four of our participants were able to complete all three
tasks using RESYNTH, and two of them failed on one of
the tasks (though not on the same one): one of them tried
to manually compose the transformation out of individual
small refactorings, but became confused and ultimately gave
up; the other participant was unable to find the right manual
edits to perform. In the future, we will investigate improve-

10 A complete description of the tasks is available at http://www.srl.
inf.ethz.ch/resynth.php.

Search Parameters Real Examples Synthetic Tests
Edit Expr. Num. Avg. Num. Avg.

distance distance failed num. failed num.
weight weight tests searched tests searched
a1 a2 trees trees

0.000 0.000 2 5306 32 6943
0.000 0.125 1 3076 26 5373
0.000 0.250 0 184 26 5348
0.000 0.500 0 119 24 4537
0.000 1.000 1 2350 16 3316
0.125 0.000 0 1248 25 5065
0.125 0.125 0 115 19 4642
0.125 0.250 0 87 16 3752
0.125 0.500 0 122 15 3396
0.125 1.000 0 1154 14 3243
0.250 0.000 0 291 21 4456
0.250 0.125 0 281 18 3885
0.250 0.250 1 223 18 3694
0.250 0.500 1 153 17 3485
0.250 1.000 1 623 14 3516
0.500 0.000 2 358 26 4481
0.500 0.125 1 189 23 4401
0.500 0.250 1 158 22 4274
0.500 0.500 1 158 20 4114
0.500 1.000 1 465 18 4092
1.000 0.000 2 3033 24 4704
1.000 0.125 1 641 24 4796
1.000 0.250 1 637 25 4786
1.000 0.500 1 477 26 4704
1.000 1.000 1 768 22 4490

Table 4. Search space with different parameters of the
heuristic function for the A* search (When a1 = a2 = 0,
the search is a breadth-first search.)

ments to our search techniques and user interface to reduce
the number of cases where intuitive edits do not lead to the
desired solution.

Only two participants noticed that the solution found by
RESYNTH for Task 3 was not quite the expected solution,
but one of them thought the alternative solution was good
enough.

After they had finished the tasks, we asked the partici-
pants whether they thought a tool like RESYNTH could be
useful, and what improvements they would like to see. Four
participants responded that they did find it useful, although
one of them qualified his response by saying that he would
not trust the tool on a complex code base. This was because
during the experiment he discovered a bug in the Eclipse im-
plementation of INLINE LOCAL VARIABLE, which led him
to doubt the reliability of Eclipse’s built-in refactoring tools
on which RESYNTH is built. Of the two participants who
were not convinced of the usefulness of RESYNTH, one was
not comfortable with the idea of performing long sequences
of refactorings in one go and instead preferred to compose
refactorings by hand, while the other was already very fa-

miliar with the Eclipse refactoring tools and did not see the
need for another tool.

Finally, the participants suggested three improvements:
(1) handling uncompilable code; (2) eliminating the “Start
Refactoring” button; (3) adding support for more refactor-
ings. The third suggestion is, in principle, quite easy to
implement by writing local equivalents for more built-in
Eclipse refactorings. The first suggestion could be addressed
by using a more robust error-correcting parser, though it re-
mains to be seen whether this would adversely affect the
quality of refactoring suggestions.

The second suggestion is more difficult to accommodate.
The participant explained that it was easy to forget to click
the “Start Refactoring” button before initiating a refactoring,
which is similar to the “late awareness dilemma” described
by Ge et al. [7]. The participant suggested that instead of
setting an explicit checkpoint, the IDE should try to infer a
likely checkpoint, such as the last version of the program
that compiled. Given that another participant specifically
asked for support for refactoring uncompilable programs,
however, it seems unlikely that this heuristic would suit all
users equally well.

While it is impossible to generalize from a study with
such a limited number of participants, we think that our
results show that the idea of synthesis-based refactoring
has promise, and with further improvements a tool like
RESYNTH could usefully complement the built-in Eclipse
refactoring tools.

6. Related Work
In this section, we discuss some of the more closely related
work in the areas of program refactoring and synthesis.

Refactoring The idea of refactoring catalogs that list com-
monly used refactoring operations and specify their behavior
already appeared in Opdyke’s thesis [22], one of the earli-
est works in the field. Another influential refactoring cata-
log was compiled by Fowler in his book on refactoring for
Java [6]. Refactoring tools in current Java IDEs still tend to
follow this catalog in the repertoire of refactorings they offer
and the names assigned to them.

However, Murphy-Hill et al. [19] found in a landmark
study on refactoring practices that while programmers refac-
tor frequently, about 90% of refactorings are performed by
hand, even where tool support is available. These numbers
were confirmed in a recent, more detailed study by Negara
et al. [20]. To make refactoring tools more attractive to pro-
grammers, some authors proposed user-interface improve-
ments [18], but even such improved tools still suffer from
discoverability issues: the programmer may not know that
an automated implementation is available for a refactoring
they perform by hand, or they may start a manual refactor-
ing before remembering that tool support is available.

To address these issues, Ge et al. [7] and Foster et al. [5]
proposed systems that observe a programmer’s editing op-

erations and try to discover editing patterns suggestive of
refactorings. If they discover such a pattern, the user is of-
fered the choice of completing the refactoring task using
a refactoring tool. Similarly, Lee et al. [16] advocate an
approach in which refactoring operations can be initiated
through drag-and-drop gestures.

In contrast to our work, all these systems can only detect
and suggest applications of a single refactoring.

Negara et al. [20] provide evidence to suggest that pro-
grammers often perform several refactorings in sequence to
achieve a single transformation. Vakilian et al. [35] further
show that programmers do this even if there is tool sup-
port for a single, larger refactoring that would perform this
transformation in one go, preferring the higher level of pre-
dictability and control afforded by step-by-step refactorings.

Our approach gives the programmer full flexibility: they
can either only perform a small set of edits and use RESYNTH
to perform the associated small-scale refactoring, or perform
more edits and let RESYNTH infer a sequence of refactor-
ings to achieve a large-scale transformation.

Even more flexibility is achieved by languages for script-
ing refactorings such as JunGL [39] or Jackpot [15], which
allow programmers to implement their own custom refactor-
ings. Given the effort involved in learning a new language
and API, however, it seems unlikely that any but the most
determined developers will use such systems on a regular
basis.

Currently, RESYNTH is built on top of the refactorings
provided by Eclipse JDT. This means that it will some-
times fail to infer a sequence of refactorings if some inter-
mediate step cannot be performed using the available refac-
torings. This problem could be alleviated by instead bas-
ing RESYNTH on more fine-grained transformations as pro-
posed in the literature [25, 27].

Steimann et al. [31, 32] take a more radical approach
which abolishes the notion of individual atomic refactor-
ings altogether. Instead, a given program’s static seman-
tics (name binding, overriding, accessibility, etc.) is encoded
as a set of constraints such that any program that fulfills
the same constraints must be semantically equivalent to the
original program. Refactoring is then simply a search prob-
lem in the space of all programs satisfying the constraints
and the intended changes performed by the user between
“begin refactoring” and “end refactoring.” While their ap-
proach is appealing for its simplicity and generality, it has
only been shown to work for a very restricted set of refac-
torings, namely refactorings for renaming and moving pro-
gram elements (but not, for example, EXTRACT METHOD).
In contrast to BeneFactor, WitchDoctor or RESYNTH, this
approach cannot be implemented on top of an existing refac-
toring tool and instead requires a complete reimplementation
of the entire refactoring engine.

In a slightly different context, several researchers have
considered the problem of detecting refactorings or other

forms of systematic code changes from program revision
histories to better understand program evolution [13, 24, 41],
and to adapt clients of evolving frameworks and libraries [3,
33, 42]. Vermolen et al. [40] consider the same problem in
a modeling setting, where models need to be migrated when
their metamodel changes. Since the goal of these approaches
is to infer completed refactorings, they can assume that all
edits arising from the refactorings have already been per-
formed. RESYNTH, on the other hand, assumes that the user
only performed some edits by hand, and that further edits
may be needed to complete the intended refactorings, which
leads to a much larger search space.

Synthesis There has long been significant interest in us-
ing program synthesis techniques aimed to simplify various
software development tasks. For a recent survey see Gul-
wani [9]. Here we describe the techniques that are most
closely related to our work, focusing on techniques for pro-
gram completion.

Prospector [17] introduced a synthesis procedure where
given an input type I and output type O, the tool statically
discovers (by examining the API specifications) a sequence
of API calls which, starting from an I object, produce an
O object. PARSEWeb [34] addresses the same problem, but
its search is guided by existing source code mined from
the web, which helps eliminate many undesirable API se-
quences. More recent work [10, 23] searches for suitable ex-
pressions of a given type at a particular program, considering
more of the program context around that point. These sys-
tems rely on good ranking algorithms to handle large num-
bers of potentially-suitable expressions. In constrast to the
aformentioned static approaches, MatchMaker [43] synthe-
sizes code based on observed API usage in dynamic execu-
tions of real-world programs.

The concept of starting with partial programs and com-
pleting them has recently been explored in various synthesis
works. The sketching approach [28] takes as input a program
with holes (a “sketch”), where the user specifies a space of
possible expressions which can be used to fill the holes. The
synthesizer then searches for correct program completions
(completions which satisfy a given property). The idea has
been applied to various application domains including bit-
ciphers [30] and concurrency [29]. In the context of concur-
rency, recent work has also devised ways to infer various
synchronization constructs in the context of concurrent pro-
gramming. Examples include atomic sections [38], memory
fences [14] and conditional critical regions [37]. These ap-
proaches complete an existing concurrent program that may
be potentially incorrect.

Similarly to the above works, our work can also be seen
as solving an instance of the program completion problem.
Here, our objective is to complete an intermediate program
Pm into another program Pf , such that Pf is a refactoring
of Pi. In some sense, Pi serves as the “specification” for
our search in the sense that Pi and Pf should be seman-

tically equivalent. However, unlike the previous work, we
do not aim to complete Pm into Pf directly—such an ap-
proach would require partial refactoring transformations to
complete the edits performed by the user, and it would be
quite difficult to even enumerate the space of such trans-
formations. Our synthesizer does not make any attempt to
complete Pm, but instead begins its search from the “spec-
ification” Pi, using the intermediate program Pm to decide
when the search has been successful.

We believe that there are many interesting future direc-
tions in combining ideas from the fields of refactoring and
synthesis. For instance, suppose that our approach cannot
find a refactoring sequence from Pi to Pm. An interesting
direction here would be to allow Pm to represent not a sin-
gle program but a partial program which symbolically repre-
sents a set of programs (e.g. a sketch). Then, the synthesizer
would try to discover a refactoring sequence starting from
Pi where the result would be correct if it contains any of the
programs symbolically represented by Pm. If such a refac-
toring sequence is discovered, it would still be an accept-
able solution (if it passes the global pre-conditions). This
approach would give the user more freedom in expressing
the partial changes to the program Pi. In addition, in terms
of the synthesis algorithm, an interesting direction could be
in formulating the problem as a logical formula and then us-
ing an SMT solver to perform the search.

7. Conclusion and Future Work
We have presented a new approach to automated refactor-
ing, inspired by synthesis from examples. In our system, the
user describes a desired transformation by performing some
of the required edits on an initial program Pi, and the syn-
thesizer searches for a sequence of refactorings of Pi that in-
cludes the edits. We described a search strategy based on the
concept of local refactoring combined with a tuned heuris-
tic search. We implemented our techniques in a tool called
RESYNTH and showed that it can already handle challeng-
ing real-world examples.

In future work, we plan to: i) implement more local refac-
torings in RESYNTH and further optimize its search tech-
niques, ii) add a user interface for rejecting a proposed refac-
toring sequence and continuing the search (the tool already
has the option to display the discovered sequence to the
user), iii) handling code which does not compile, and iv)
generalize our approach to transformations beyond refac-
toring, e.g., generation of boilerplate code: modern Java
IDEs include many such transformations, and our techniques
could further ease their usage.

References
[1] ABADI, A., ETTINGER, R., AND FELDMAN, Y. A. Re-

approaching the Refactoring Rubicon. In WRT (2008).

[2] BECK, K., AND ANDRES, C. Extreme Programming Ex-
plained: Embrace Change (2nd Edition). Addison-Wesley
Professional, 2004.

[3] DIG, D., COMERTOGLU, C., MARINOV, D., AND JOHNSON,
R. Automated Detection of Refactorings in Evolving Compo-
nents. In ECOOP (2006).

[4] Eclipse 4.2. http://www.eclipse.org/eclipse4.

[5] FOSTER, S. R., GRISWOLD, W. G., AND LERNER, S.
WitchDoctor: IDE Support for Real-time Auto-completion of
Refactorings. In ICSE (2012).

[6] FOWLER, M. Refactoring: Improving the Design of Existing
Code. Addison Wesley, 2000.

[7] GE, X., DUBOSE, Q. L., AND MURPHY-HILL, E. R. Rec-
onciling Manual and Automatic Refactoring. In ICSE (2012).

[8] GRISWOLD, W. G. Program Restructuring as an Aid to Soft-
ware Maintenance. Ph.D. thesis, University of Washington,
1991.

[9] GULWANI, S. Dimensions in program synthesis. In ACM
PPDP (2010).

[10] GVERO, T., KUNCAK, V., KURAJ, I., AND PISKAC, R. On
Complete Completion using Types and Weights. Tech. Rep.
182807, EPFL, 2012.

[11] HART, P. E., NILSSON, N. J., AND RAPHAEL, B. A formal
basis for the heuristic determination of minimum cost paths.
In IEEE Transactions on Systems Science and Cybernetics
(1968), IEEE, pp. 100–107.

[12] IntelliJ IDEA 12 Community Edition. http://www.
jetbrains.com/idea.

[13] KIM, M., NOTKIN, D., AND GROSSMAN, D. Automatic
Inference of Structural Changes for Matching Across Program
Versions. In ICSE (2007).

[14] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic
inference of memory fences. ACM SIGACT News (2012).

[15] LAHODA, J., BEČIČKA, J., AND RUIJS, R. B. Custom
Declarative Refactoring in NetBeans. In WRT (2012).

[16] LEE, Y. Y., CHEN, N., AND JOHNSON, R. E. Drag-and-Drop
Refactoring: Intuitive and Efficient Program Transformation.
In ICSE (2013).

[17] MANDELIN, D., XU, L., BODÍK, R., AND KIMELMAN, D.
Jungloid mining: helping to navigate the API jungle. In ACM
PLDI (2005).

[18] MURPHY-HILL, E. R., AND BLACK, A. P. Breaking the
Barriers to Successful Refactoring: Observations and Tools
for Extract Method. In ICSE (2008).

[19] MURPHY-HILL, E. R., PARNIN, C., AND BLACK, A. P.
How We Refactor, and How We Know It. TSE 38, 1 (2012).

[20] NEGARA, S., CHEN, N., VAKILIAN, M., JOHNSON, R. E.,
AND DIG, D. A Comparative Study of Manual and Auto-
mated Refactorings. In ECOOP (2013).

[21] NetBeans 7.0.1. http://netbeans.org.

[22] OPDYKE, W. F. Refactoring Object-Oriented Frameworks.
Ph.D. thesis, University of Illinois at Urbana-Champaign,
1992.

[23] PERELMAN, D., GULWANI, S., BALL, T., AND GROSSMAN,
D. Type-directed completion of partial expressions. In ACM
PLDI (2012).

[24] PRETE, K., RACHATASUMRIT, N., SUDAN, N., AND KIM,
M. Template-based Reconstruction of Complex Refactorings.
In ICSM (2010).

[25] REICHENBACH, C., COUGHLIN, D., AND DIWAN, A. Pro-
gram Metamorphosis. In ECOOP (2009).

[26] ROBERTS, D., BRANT, J., AND JOHNSON, R. E. A Refac-
toring Tool for Smalltalk. TAPOS 3, 4 (1997).

[27] SCHÄFER, M., VERBAERE, M., EKMAN, T., AND

DE MOOR, O. Stepping Stones over the Refactoring
Rubicon – Lightweight Language Extensions to Easily
Realise Refactorings. In ECOOP (2009).

[28] SOLAR-LEZAMA, A. The sketching approach to program
synthesis. In APLAS (2009).

[29] SOLAR-LEZAMA, A., JONES, C. G., AND BODIK, R.
Sketching concurrent data structures. In ACM PLDI (2008).

[30] SOLAR-LEZAMA, A., TANCAU, L., BODIK, R., SESHIA,
S., AND SARASWAT, V. Combinatorial sketching for finite
programs. SIGOPS Oper. Syst. Rev. (2006).

[31] STEIMANN, F., KOLLEE, C., AND VON PILGRIM, J. A
Refactoring Constraint Language and Its Application to Eiffel.
In ECOOP (2011).

[32] STEIMANN, F., AND VON PILGRIM, J. Refactorings Without
Names. In ASE (2012).

[33] TANEJA, K., DIG, D., AND XIE, T. Automated Detection of
API Refactorings in Libraries. In ASE (2007).

[34] THUMMALAPENTA, S., AND XIE, T. Parseweb: a program-
mer assistant for reusing open source code on the web. In
ACM/IEEE ASE (2007).

[35] VAKILIAN, M., CHEN, N., MOGHADDAM, R. Z., NEGARA,
S., AND JOHNSON, R. E. A Compositional Paradigm of
Automating Refactorings. In ECOOP (2013).

[36] VAKILIAN, M., CHEN, N., NEGARA, S., RAJKUMAR,
B. A., BAILEY, B. P., AND JOHNSON, R. E. Use, Disuse,
and Misuse of Automated Refactorings. In ICSE (2012).

[37] VECHEV, M., YAHAV, E., AND YORSH, G. Inferring syn-
chronization under limited observability. In TACAS (2009).

[38] VECHEV, M., YAHAV, E., AND YORSH, G. Abstraction-
guided synthesis of synchronization. In ACM POPL (2010).

[39] VERBAERE, M., ETTINGER, R., AND DE MOOR, O. JunGL:
A Scripting Language for Refactoring. In ICSE (2006).

[40] VERMOLEN, S., WACHSMUTH, G., AND VISSER, E. Recon-
structing Complex Metamodel Evolution. In SLE (2011).

[41] WEISSGERBER, P., AND DIEHL, S. Identifying Refactorings
from Source-Code Changes. In ASE (2006).

[42] XING, Z., AND STROULIA, E. API-Evolution Support with
Diff-CatchUp. TSE 33, 12 (2007).

[43] YESSENOV, K., XU, Z., AND SOLAR-LEZAMA, A. Data-
driven synthesis for object-oriented frameworks. In ACM
OOPSLA (2011).

