
Thin Slicing
Manu Sridharan, Ras Bodík

UC Berkeley

Stephen J. Fink
 IBM Research

“Thin-slicing is part of what makes the unconscious
so dazzling. But it's also what we find most
problematic about rapid cognition. How is it
possible to gather the necessary information for a
sophisticated judgment in such a short time?”

Malcolm Gladwell,
Blink: The Power of Thinking Without Thinking

2

Slices Large By Definition
Goal: show code “relevant” to seed statement

E.g., seed is crash point, cause in relevant code

Slice relevance: all stmts that may affect seed s
•  Affect = transitive control + data dependences
•  Intuitive: returns executable subset

Problem: slice relevance too broad for user tasks
•  Slices often most of the program
•  Better analysis won’t help!

Thin slicing approach: Task-centric relevance
•  Focus on direct value flow to seed
•  3.3X, 9.4X reduction in simulated developer effort

3

A Typical Large Slice
String[] readNames(InputStream input) {
 String[] firstNames = new String[100]; int i = 0;
 while (!eof(input)) {
 String fullName = readFullName(input);
 int spaceInd = fullName.indexOf(‘ ‘);
 if (spaceInd != -1) {
 // BUG: should pass spaceInd
 String firstName = fullName.substr(0, spaceInd-1);
 firstNames[i++] = firstName; } }
 return firstNames; }
void printNames(String[] firstNames) {
 for (int i = 0; i < firstNames.length; i++) {
 String firstName = firstNames[i];
 print(“FIRST NAME: “ + firstName);
 }}
void main(String[] args) {
 String[] firstNames = readNames(…);
 SessionState s = getState(); s.setNames(firstNames);
 if (handleRequests()) {
 printNames(getState().getNames()); }}

The slice:
Too many
statements!

FIRST NAME: Man
FIRST NAME: Stephe
FIRST NAME: Rastisla

void handleRequests() {
 while (pending) {
 Request r = getRequest();
 print(“handling “ + r);
 if (r.isImportant()) {
 handleImmediately(r);
 } else {
 queue.add(r);
 }
 }
 while (!queue.isEmpty()) {
 Request current = queue.choose();
 handleImmediately(current);
 if (badRequest) return false;
 }
 return true;
}

…

4

Task-Centric Relevance
For tasks, value flow often most important

Thin slice relevance: producers for seed
•  Producer def: flows a “top-level” value to seed

Top-level: ignoring dereferenced pointers

•  Interprocedural def-use chains (including heap)
Program slice

 seed

 in thin slice

 in thin slice

x = new A();
z = x;
y = new B();
w = x;
w.f = y;
if (w == z)
 v = z.f;

Program slice
Program slice
Program slice
Program slice
Program slice
Program slice

5

String[] readNames(InputStream input) {
 String[] firstNames = new String[100]; int i = 0;
 while (!eof(input)) {
 String fullName = readFullName(input);
 int spaceInd = fullName.indexOf(‘ ‘);
 if (spaceInd != -1) {
 // BUG: should pass spaceInd
 String firstName = fullName.substr(0, spaceInd-1);
 firstNames[i++] = firstName; } }
 return firstNames; }
void printNames(String[] firstNames) {
 for (int i = 0; i < firstNames.length; i++) {
 String firstName = firstNames[i];
 print(“FIRST NAME: “ + firstName);
 }}
void main(String[] args) {
 String[] firstNames = readNames(…);
 SessionState s = getState(); s.setNames(firstNames);
 if (handleRequests()) {
 printNames(getState().getNames()); }}

Thin Slicing in Action

6

Are We Done?

Tried several debugging, comprehension tasks

For ~50% of tasks, thin slice alone suffices

For other tasks:
•  Often need thin slice + a couple statements

•  Can we handle these cases?

7

Thin Slice Expansion

Thin slices exclude explainers
Explainer def: shows why producer can affect seed

•  Why heap accesses read / write same object, or
•  Why producer can execute

Most explainers not useful for tasks
(Transitive) producers + explainers = whole slice

Expose with incremental expansion
•  Guided by user

•  Typically, little expansion needed

8

Explaining Heap-Based Flow

Question: why are base pointers may-aliased?
Answer: two more thin slices!

Shows flow of common object(s)

Incremental: just one level of data structures

?

x = new A();
z = x;
y = new B();
w = x;
w.f = y;
if (w == z)
 v = z.f;

9

Explaining Control Flow

Question: why can producer execute?
Answer: lexically close control dependences

•  Always sufficient in tested tasks

•  Usually, source code navigation enough

x = new A();
z = x;
y = new B();
w = x;
w.f = y;
if (w == z)
 v = z.f; ?

10

Evaluation Methodology

Hypothesis: more effective for developer tasks
E.g., tracking down a bug

Slice sizes not a good metric
•  Developer stops when cause discovered

•  Likely to browse dependences, as in Codesurfer

Compare simulated developer effort
(Renieris and Reiss, ASE03)
•  BFS from crash point (seed) to cause of bug

•  Count reached (“inspected”) statements

•  (Include identical control dependences)

11

Program Slicing vs. Thin Slicing

Mean of 12 inspected stmts / thin slice
Manageable for a developer

Overall, 3.3X fewer inspected stmts
In an understanding experiment, 9.4X fewer inspected stmts

12

Scalable and Precise Thin Slicing

Two key computations
•  Points-to analysis (call graph, aliasing info)

•  Reachability on dependence graph

For precision: Context-sensitive points-to analysis
•  Used Andersen’s + object-sensitive containers
•  Just Andersen’s) up to 17.2X more inspected stmts

For scalability: Context-insensitive reachability
•  Context-sensitive bottleneck: heap accesses as parameters

•  In tested tasks, no precision loss observed

13

Conclusions / Future Work

Program slices too large by definition
Problem: relevance too broad

For thin slicing, only producers relevant
Sufficient for ~50% of tasks

Expand to show useful explainers
Usually close to producers

Bottom line: basis for practical slicing tool
Next steps: Eclipse front end, user study

Get the code! http://wala.sourceforge.net

