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Abstract
We present a precise, path-sensitive static analysis for reasoning
about heap reachability; that is, whether an object can be reached
from another variable or object via pointer dereferences. Precise
reachability information is useful for a number of clients, includ-
ing static detection of a class of Android memory leaks. For this
client, we found that the heap reachability information computed
by a state-of-the-art points-to analysis was too imprecise, lead-
ing to numerous false-positive leak reports. Our analysis combines
a symbolic execution capable of path-sensitivity and strong up-
dates with abstract heap information computed by an initial flow-
insensitive points-to analysis. This novel mixed representation al-
lows us to achieve both precision and scalability by leveraging the
pre-computed points-to facts to guide execution and prune infea-
sible paths. We have evaluated our techniques in the THRESHER
tool, which we used to find several developer-confirmed leaks in
Android applications.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords heap reachability; path-sensitive analysis; symbolic
execution

1. Introduction
Static reasoning about nearly any non-trivial property of modern
programs requires effective analysis of heap properties. In partic-
ular, a heap analysis can be used to reason about heap reachabil-
ity—whether one heap object is reachable from another via pointer
dereferences at some program point. Precise heap reachability in-
formation improves heap-intensive static analyses, such as escape
analysis, taint analysis, and cast checking. A heap reachability
checker would also enable a developer to write statically check-
able assertions about, for example, object lifetimes, encapsulation
of fields, or immutability of objects.

Our interest in heap-reachability analysis arose while develop-
ing a tool for detecting an important class of memory leaks in
Android applications. Briefly, such a leak occurs when an object
of type Activity remains reachable from a static variable after the
end of its life cycle and thus cannot be freed by the garbage col-
lector (explained further in Sections 2 and 4). For this client, we
found that highly precise reasoning about heap reachability, includ-
ing flow-, context-, and path-sensitivity with materialization [43],
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was required to avoid emitting too many spurious warnings. We are
unaware of an existing analysis that can provide such precision for
heap-reachability queries while scaling to our target applications
(40K SLOC with up to 1.1M SLOC of libraries). While approaches
based on predicate abstraction or symbolic execution [2, 4, 11, 31]
could provide the necessary precision in principle, to our best
knowledge such approaches have not been shown to handle heap-
reachability queries for real-world object-oriented programs (fur-
ther discussion in Section 5).

We present an analysis for precise reasoning about heap reach-
ability via on-demand refinement of a flow-insensitive points-
to analysis. When the points-to analysis cannot refute a heap-
reachability query Q, our technique performs a backwards search
for a path program [7] witnessing Q; a failed search means Q is
refuted. Our analysis is flow-, context-, and path-sensitive with lo-
cation materialization, yielding the precision required by clients
like the Android memory leak detector in an on-demand fashion.

In contrast to previous approaches to refinement-based or staged
heap analysis [25, 26, 28, 36, 44], our approach refines points-to
facts directly and is capable of path-sensitive reasoning. Also, un-
like some prior approaches [28, 36, 44], our analysis does not at-
tempt to refine the heap abstraction of the initial points-to analysis.
Instead, we focus on the orthogonal problem of on-demand flow-
and path-sensitive reasoning given a points-to analysis with a suffi-
ciently precise heap abstraction.

Our analysis achieves increased scalability through two novel
uses of the initial points-to analysis result. First, we introduce a
mixed symbolic-explicit representation of heap reachability queries
and transfer functions that simultaneously enables strong updates
during symbolic execution, exploits the initial points-to analysis re-
sult, and mitigates the case split explosion seen with a fully explicit
representation. Crucially, our representation allows the analysis to
avoid case-splitting over entire points-to sets when handling heap
writes, key to scaling beyond small programs. We also maintain in-
stance constraints for memory locations during analysis, based on
points-to facts, and use these constraints during query simplifica-
tion to obtain contradictions earlier, improving performance.

Second, our analysis utilizes points-to facts to handle loops ef-
fectively, a well-known source of problems for symbolic analyses.
Traditionally, such analyses either require loop invariant annota-
tions or only analyze loops to some fixed bound. We give a sound
algorithm for inferring loop invariants over points-to constraints
on path programs during backwards symbolic execution. Our al-
gorithm takes advantage of the heap abstraction computed by the
up-front points-to analysis to effectively over-approximate the ef-
fects of the loop during the backwards refinement analysis (Sec-
tion 3.3). Our technique maintains constraints from path conditions
separately from the heap reachability constraints, enabling heuristic
“dropping” of path constraints at loops to avoid divergence without
significant precision loss in most cases.



Contributions. This paper makes the following contributions:

• We describe a technique for refining a points-to analysis with
strong updates, path sensitivity, and context sensitivity to im-
prove precision for heap-reachability queries. Our technique
centers on enriching a backwards symbolic execution with the
over-approximate information from the up-front points-to anal-
ysis to guide the execution and prune infeasible paths.
• We introduce a mixed symbolic-explicit representation of heap

reachability queries and corresponding transfer functions that
enable strong updates and precise disaliasing information dur-
ing symbolic execution while reducing case splitting compared
to a fully explicit approach. This representation is important
both for finding contradictions early and for collapsing paths
effectively.
• We present a method for inferring loop invariants for heap-

reachability queries during symbolic execution based on over-
approximating the heap effects of loops and dropping path
constraints that may lead to divergence.
• We demonstrate the usefulness of our analysis by applying it to

the problem of finding memory leaks in Android applications.
Our tool refuted many of the false alarms that a flow-insensitive
analysis reported for real-world Android applications and fin-
ished in less than twenty minutes on most programs we tried.
We used our tool to successfully identify real (and developer-
confirmed) memory leaks in several applications.

2. Overview
Here we present a detailed example to motivate our precise heap-
reachability analysis and illustrate our technique. The example is
based on real code from Android applications and libraries, and
verifying the desired heap-reachability property requires strong up-
dates, context sensitivity, and path sensitivity, which our technique
provides in an on-demand fashion.

Our techniques were motivated by the need to detect leaks of
Activity objects in Android applications. Every Android applica-
tion has least one associated Activity object to control the user in-
terface. Android development guidelines state that application code
should not maintain long-lived pointers to Activity objects, as such
pointers prevent the objects from being garbage collected at the end
of their lifetimes, causing significant memory leaks (we discuss this
issue further in Section 4). To detect such leaks in practice, it is
sufficient to verify that Activity objects are never reachable from a
static field via object pointers.

Figure 1 is a simple application that illustrates the difficulties
of precisely checking this heap reachability property (ignore the
boxed assertions for now). The Main class initializes and starts
the application’s Activity, the Act class. The Vec class captures
the essence of a list data structure, as implemented in Android.
This example is free of the leak described above, as the Act object
allocated on line 1 is never made reachable from a static field.

Act Vec

vec0 arr0

vec0.arr1 act0

act0.vec1 vec1.arr1

objs EMPTY

tbl

tbl

tb
l

tbl

contents

contents

contents

Figure 2.

For this example program,
flow-insensitive points-to analy-
sis techniques cannot prove the
desired heap (un)reachability
property due to the manner in
which the Vec class is imple-
mented. In the inset, we show
a heap graph obtained by ap-
plying Andersen’s analysis [1]
with one level of object sensi-
tivity [40] to the example. Graph nodes represent classes or ab-
stract locations (whose names are shown at the corresponding al-
location site in Figure 1), and edges represent possible values of

public class Main {
public static void main(String[] args) {

1 Act a = newact0 Act(); a.onCreate();
2 }

}
public class Act extends Activity {

private static final Vec objs = newvec0 Vec();
public void onCreate() {

3 Vec acts = newvec1 Vec();

4
v̂intsz < v̂intcap, âcts·sz 7� v̂intsz , âcts·cap 7� v̂intcap,

this 7� t̂his,acts 7� âcts, âcts·tbl 7�arr0, t̂his 7�act0

acts.push(this

5
v̂intsz < v̂intcap, t̂his·sz 7� v̂intsz , t̂his·cap 7� v̂intcap,
this 7�vec1,vec1·tbl 7�arr0,val 7�act0

);
6 . . .
7 objs.push("hello"

8
v̂intsz < v̂intcap, t̂his·sz 7� v̂intsz , t̂his·cap 7� v̂intcap,
this 7�vec0,vec0·tbl 7�arr0,val 7�act0

†

);
9 }

}
public class Vec {

private static final Object[] EMPTY = newarr0 Object[1];
private int sz; private int cap; private Object[] tbl;

public Vec() {
10 this.sz = 0; this.cap = -1; this.tbl = EMPTY;

11
v̂intsz < v̂intcap, t̂his·sz 7� v̂intsz , t̂his·cap 7� v̂intcap,

this 7� t̂his, t̂his·tbl 7�arr0
†

}

public void push(Object val) {
12 Object[] oldtbl = this.tbl;

13
v̂intsz < v̂intcap, t̂his·sz 7� v̂intsz , t̂his·cap 7� v̂intcap,

this 7� t̂his, t̂his·tbl 7�arr0,val 7�act0

if (this.sz >= this.cap) {
14 this.cap = this.tbl.length * 2;
15 this.tbl = newarr1 Object[this.cap];

16 this 7� t̂his, t̂his·tbl 7�arr0,val 7�act0 †

for (int i = 0; i < this.sz; i++) {
17 this.tbl[i] = oldtbl[i]; // copy from oldtbl
18 }
19 }

20 this 7� t̂his, t̂his·tbl 7�arr0,val 7�act0

this.tbl[this.sz] = val;

21 arr0·contents 7�act0

this.sz = this.sz + 1;
22 }

}

Figure 1. Refuting a false alarm with context-sensitive, path-
sensitive witness search. We show witness queries in the boxes.
The † indicate refuted branches of the witness search.

field pointers. Object-sensitive abstract locations are named appro-
priately, for example, vec0.arr1 for arr1 instances allocated when
Vec.push(−) is invoked on instances of vec0. Each edge indi-
cates a may points-to relationship, written as a1· f Z⇒ a2, meaning
there may be an execution where field f of abstract location a1 con-
tains the address of location a2. The graph imprecisely shows that



Activity object act0 is reachable from both static fields Act·objs
and Vec·EMPTY, hence falsely indicating that a leak is possible.

The root cause of the imprecision in Figure 2 is the edge
arr0·contents Z⇒ act0, which indicates that the array assigned to
Vec·EMPTY may contain the Activity object. Vec is implemented
using the null object pattern [45]: rather than allocating a sepa-
rate internal array for each empty Vec, all Vec objects initially
use Vec·EMPTY as their internal array. The code in Vec is care-
fully written to avoid ever adding objects to Vec·EMPTY while
also avoiding additional branches to check for the empty case.
But, a flow-insensitive points-to analysis is incapable of reason-
ing precisely about this code, and hence it models the state-
ment this.tbl[this.sz] = val on line 20 as possibly writing
to Vec·EMPTY, polluting the points-to graph. Real Android col-
lections are implemented in this way.1 Note that a more precise
heap abstraction would not help in this case—because the (con-
crete) null object is shared among all instances the Vec class, no
refinement on the heap abstraction alone would be sufficient to rule
out this false alarm.

More precise analysis of this example requires reasoning about
the relationship between the sz and cap fields of each Vec. This
relationship is established in the Vec’s constructor and must be
preserved until its push method is called. Though there is a large
body of work focused on the important problem of refining heap
abstractions (e.g., [36, 44]), this example shows that doing so alone
is sometimes not sufficient for precise results. An analysis that
lacks path sensitivity and strong updates will be unable to prove
that Vec’s never write into the shared array and must therefore
conflate the contents of all Vec objects. The witness-refutation
technique that we detail in this paper enables after-the-fact, on-
demand refinement to address this class of control-precision issues.

Refinement by Witness Refutation. We refine the results of the
flow-insensitive points-to analysis by attempting to refute all execu-
tions that could possibly witness an edge involved in a leak alarm.
The term “witness” is highly overloaded in the program analysis lit-
erature, so we begin by carefully defining its use in our context. We
first define a path as a sequence of program transitions. A path wit-
ness for a query Q is a path that ends in a state that satisfies Q. Such
a path witness may be concrete/under-approximate/must in that it
describes a sequence of program transitions according to a concrete
semantics that results in a state where Q holds (e.g., a test case ex-
ecution). Analogously, an abstract/over-approximate/may path wit-
ness is such a sequence over an abstract semantics (e.g., a trace in
an abstract interpreter). Building on the definition of a path pro-
gram [7], we define a path program witness for a query Q as a
path program that ends in a state satisfying Q. A path program is a
program projected onto the transitions of a given execution trace
(essentially, paths augmented with loops). Note that a path pro-
gram witness may be under- or over-approximate in its handling
of loops. In this paper, we use the term “witness” to refer to over-
approximate path program witnesses unless otherwise stated, as our
focus is on sound refutation of queries.

Our analysis performs a goal-directed, backwards search for a
path program witness ending in a state that satisfies a query Q. We
witness a query by giving a witness that produces it, or we refute
a query by proving that no such witness can exist. Our technique
proceeds in three phases.

Obtain a Conservative Analysis Result. First, we perform a stan-
dard points-to analysis to compute an over-approximation of the set
of reachable heaps, such as the points-to graph in Figure 2.

1 In fact, we discovered buggy logic in the actual Android libraries that
allowed writing to a null object, thereby polluting all empty containers! The
bug was acknowledged and fixed by Google (https://code.google.
com/p/android/issues/detail?id=48055).

Formulate Queries. Second, we formulate queries to refute alarms
generated using the points-to analysis result. For the Activity leak
detection client, an alarm is a points-to path between a static field
and an Activity object. For example, the following points-to path
from the graph in Figure 2 is a (false) leak alarm:

Act·objs Z⇒vec0,vec0·tbl Z⇒arr0,arr0·contents Z⇒act0

To refute an alarm, we attempt to refute each individual edge
in the corresponding points-to path. If we witness all edges in the
path, we report a leak alarm. If we refute some edge e in the path,
we delete e from the points-to graph and attempt to find another
path between the source node and the sink node. If we find such a
path, we restart the process with the new path. If we refute enough
edges to disconnect the source and sink in the points-to graph, we
have shown that the alarm raised by the flow-insensitive points-to
analysis is false.

For our client, we wish to show the flow-insensitive property
that a particular points-to constraint cannot hold at any program
point. Thus, for each points-to edge e to witness, we consider
a query for e at every program statement that could produce e.
This information can be obtained by simple post-processing or
instrumentation of the up-front points-to analysis [8].

Search for Witnesses. Finally, given a query Q at a particular pro-
gram point, we search for path program witnesses on demand. In
Figure 1, we illustrate a witness search that produces a refutation
for the points-to constraint arr0·contents 7�act0 holding at program
point 21. That is, we prove that the points-to constraint is unre-
alizable at that program point. By starting a witness search from
each statement that potentially produces the edge, we will see that
arr0·contents 7�act0 is in fact unrealizable at any program point.

Notationally, we use a single arrow 7� to denote an exact
points-to constraint, whose source and sink are symbolic val-
ues typically denoting addresses of memory cells, and a double
arrow Z⇒ to denote a may points-to edge between abstract loca-
tions (cf., Section 3.1). For example, the exact points-to constraint
arr0·contents 7�act0 describes a single memory cell whose address
is some instance in the concretization of arr0 and contents is some
instance in the concretization of act0. This distinction is critical for
enabling strong updates in a backwards analysis.

2.1 Mixed Symbolic-Explicit Queries
We illustrate the witness search by showing the sub-queries (boxed)
that arise as the search progresses. Moving backwards from our
starting point at line 21, the sub-query at program point 20 says
that we need the following heap state at that point:

this 7� t̂his, t̂his·tbl 7�arr0,val 7�act0 (†)

where t̂his is a symbolic variable that represents the receiver of the
method. A symbolic variable (written as a hatted letter v̂) is an exis-
tential standing for an arbitrary instance drawn from some definite
set of abstract locations. Here, t̂his represents some instance drawn
from the points-to set of local variable this, which is {vec0,vec1}.
We represent this fact with an instance constraint:

t̂his from {vec0,vec1} (‡)

that we track as part of the query at program point 20. For the mo-
ment, we elide such ‘from’ constraints and discuss them further in
Section 2.2 and Section 3. This sub-query conjoining the heap state
from (†) and the instance constraint from (‡) is an example of a
mixed symbolic-explicit state because we introduce a fresh sym-
bolic variable for the contents of this, but also have named abstract
locations arr0 and act0. We say that a query is fully explicit if all of
its points-to constraints are between named abstract locations from
the points-to abstraction. A named abstract location can be seen
as a symbolic variable that is constrained to be from a singleton

https://code.google.com/p/android/issues/detail?id=48055
https://code.google.com/p/android/issues/detail?id=48055


abstract location set. This connection to the points-to abstraction
in an explicit query enables our witness search to prune paths that
are inconsistent with the up-front points-to analysis result, as we
demonstrate in Section 2.2.

Backwards Path-By-Path Analysis. Returning to the example, the
path splits into two prior to program point 20, one path entering the
if control-flow branch at point 19, the other bypassing the branch
to point 13. We consider both possibilities and indicate the fork
in Figure 2 by indenting from the right margin. For the path into
the branch, the loop between program points 16 and 19 has no
effect on the query in question from point 20, so it simply continues
backward to program point 16. Observe that because we are only
interested in answering a specific query, this irrelevant loop poses
no difficulty. At program point 16, we encounter a refutation for this
path: the preceding assignment statement writes an instance of arr1
to the t̂his·tbl field, which contradicts the requirement that t̂his·tbl
hold an instance of arr0 (underlined). Thus, we have discovered that
no concrete program execution can assign a newly allocated array
to this.tbl at line 15, that is, an instance of arr1 and then place an
Activity object in the EMPTY array at line 20 because this.tbl will
point to that newly allocated array by then.

Resuming the path that bypasses the if branch, the analysis at
program point 13 determines that entering the if branch changed
the query and thus adds a control-path constraint to the abstract
state indicating that the value of the this.sz field (i.e., v̂intsz ) must
be less than the value of the this.cap field (i.e., v̂intcap). As we will
see, tracking the path constraint above is critical to obtaining a
refutation for the example. From here, this path reaches the method
boundary, leading the analysis to process the possible call sites at
program points 8 and 5. The path at program point 8 can be refuted
at this point, as the query requires that the val parameter be bound
to an instance of act0 (underlined), but the actual argument is the
string "hello". Thus, we have identified that this call to push
cannot be the reason that an Activity object is placed into the EMPTY
array because it is pushing a string, not an Activity.

The other path from the acts.push call site (i.e., program
point 5) can continue. The query at program point 4 before the
call simply changes the program variables of the callee to those
of the caller. Continuing this path, we enter the constructor of Vec
at program point 11. Here, we discover that the values of the sz
and cap fields as initialized in the constructor contradict the control
constraint v̂intsz < v̂intcap. Intuitively, the witness search has observed
the invariant that a Vec’s tbl field cannot point to the EMPTY
array after a call to its push method. We have refuted the last path
standing, and so we have shown that the statement at line 21 cannot
produced the edge arr0·contents 7�act0.

In the above, we have been rather informal in describing why
certain points-to facts can be propagated back unaffected and why
producing certain facts can be done with a strong update-style
transfer function. Furthermore, in the example program from Fig-
ure 1, there is one (and only one) more statement that could pro-
duce the constraint arr0·contents 7�act0, which is the assignment at
line 17 inside the copy loop. A witness search for this query starting
at line 17 leads to a refutation similar to the one described above,
but to discover it we must first infer a non-trivial loop invariant.
Because we are interested in an over-approximate path program
witness-refutation search, we have to obtain loop invariants. We
consider these issues further in Section 3.

2.2 Taming Path Explosion From Aliasing
In the previous subsection, we focused on how refutations can
occur. For example, backwards paths were pruned at line 15 and at
program point 8 because we reach an allocation site that conflicts
with our instance constraints in the query (e.g., we need an arr0

1
x 7� ŷ,y 7� ŷ,p 7� ẑ

∧ ẑ from ptG̊(p)∩ptG̊(y.f)∩ r̊, ŷ from ptG̊(x)∩ptG̊(y)

x 7� x̂,y 7� ŷ, ŷ·f 7� ẑ ∧ ẑ from ptG̊(y.f)∩ r̊, ŷ from ptG̊(y) ∧ x̂ 6= ŷ

x.f = p;

2 y 7� ŷ, ŷ·f 7� ẑ ∧ ẑ from ptG̊(y.f)∩ r̊, ŷ from ptG̊(y)

z = y.f;

3 z 7� ẑ ∧ ẑ from r̊

Figure 3. An example illustrating how ‘from’ constraints help
tame path explosion from aliasing. Note that the set of abstract
locations to which symbolic variable ẑ might belong is restricted
each time we observe ẑ flow through a variable or field.

not an arr1 at line 15). In this section, we present a simple example
to explain how our mixed symbolic-explicit representation enables
our analysis to derive such contradictions earlier and thus mitigates
the aliasing path explosion problem.

An over-approximate backwards symbolic executor that lacks
information about aliasing will be forced to fork a number of cases
to account for aliasing at every field write, quickly causing a case
explosion that is worst-case exponential in the number of field
writes. This case explosion is independent of (but compounded
by) the well-known scalability problems caused by conditional
branching in a path-sensitive analysis.

To address this aliasing path explosion problem, the key obser-
vation that we make is that contradictions from instance constraints
can be derived before the allocation site by exploiting information
from the up-front points-to analysis. In particular, the set of pos-
sible allocation sites for any instance can be restricted as we rea-
son about how they flow into and out of program variables and
heap locations. This observation motivates our mixed symbolic-
explicit representation, which we demonstrate with a simple exam-
ple shown in Figure 3. Our initial query at point 3 asks if program
variable z can point to an instance ẑ from some set of abstract loca-
tions r̊—we call this a points-to region. Moving backwards across
the statement z = y.f, we derive a pre-query at point 2 that says
our original query can be witnessed if y points to some instance ŷ
and that instance points to ẑ through its f field (i.e., y 7� ŷ, ŷ·f 7� ẑ).
Additionally, we now know that the instance ẑ must be drawn from
the intersection of r̊ and the abstract locations in the points-to set of
y.f, which we write as ptG̊(y.f). If we can use the points-to graph
G̊ to determine that no such abstract location exists (e.g., if we had
r̊ = {a0,a2} and ptG̊(ŷ.f) = {a1}), then we have refuted this query
and can prune this path immediately.

Assuming r̊ and ptG̊(y.f) are not disjoint (i.e., r̊∩ptG̊(y.f) 6= /0),
we proceed with our backwards analysis to the field write x.f = p.
We must consider two cases at program point 1: one where x and
y are aliased (the top query) and one where they are not (the
bottom query). In the aliased case, we can further constrain the
instance û to be from ptG̊(x)∩ ptG̊(y). Some previous tools have
used an up-front, over-approximate points-to analysis as an aliasing
oracle to rule out aliased cases like this one (e.g., PSE [39])—if
x and y cannot possibly point to the same abstract location (i.e.,
ptG̊(x)∩ ptG̊(y) = /0), this aliased case is ruled out. Our approach
generalizes this kind of aliasing check by explicitly introducing
‘from’ constraints that are incrementally restricted. For example,
we also constrain ẑ to be from ptG̊(p)∩ ptG̊(y.f)∩ r̊, where the
additional restriction is ptG̊(p). This constraint says that the field
write x.f = p produced the query in question only if the instance
ẑ is drawn from some abstract location shared by these three sets.



Finally, we consider the case where x and y are not aliased (i.e.,
x̂ 6= ŷ). Here, the only change to the query is the addition of the
constraints x 7� x̂ and x̂ 6= ŷ. This disequality further constrains the
query so that if we later discover that x and y are in fact aliased,
we can refute this query. Accumulation of this kind of disaliasing
constraint is common (e.g., [11]), but expensive (cf., Section 3.3).

We remark that the instance ‘from’ constraints can be viewed
as a generalization of a fully explicit representation. To represent
‘from’ constraints explicitly, instead of a symbolic points-to con-
straint x 7� x̂, we disjunctively consider all cases where we replace
the symbolic variable x̂ with an abstract location from ptG̊(x) (the
points-to set of x) For example, suppose ptG̊(x) = {a1,a2}; then we
case split and consider two heap states: (1) x 7� a1 and (2) x 7� a2.
This representation corresponds roughly to a backwards extension
of lazy initialization [33] over abstract locations instead of types.
Note that while PSE-style path pruning only applies to ruling out
the aliased case in field writes, the explicit representation of ‘from’
constraints permits the same kind of flow-based restriction shown
in Figure 3. However, the cost is case splitting a separate query for
each possible abstract location from which each symbolic variable
is drawn (e.g., |ptG̊(y.f)∩ r̊| · |ptG̊(y)| queries at program point 2).

3. Refuting Path Program Witnesses
We formalize our witness-refutation analysis and argue that our
technique is refutation sound—that we only declare an edge re-
futed when no concrete path producing that query can exist. The
language providing the basis for our formalization is defined as
follows: This language is a standard imperative programming lan-
guage with object fields and dynamic memory allocation.

statements s ::= c | skip | s1 ;s2 | s1 8s2 | loops
commands c ::= x := y | x := y.f | x.f := y | x := newa τ() | assumee
expressions e ::= x | · · ·
types τ ::= { f1, . . . , fn} | · · ·
program variables x,y object fields f abstract locations a

Atomic commands c include assignment, field read, field write,
object allocation, and a guard. For the purposes of our discus-
sion, it is sufficient if an object type is just a list of field names.
We leave unspecified a sub-language of pure expressions, except
that it allows reading of program variables. The label a on al-
location names the allocation site so that we can tie it to the
points-to analysis. Compound statements include a do-nothing
statement, sequencing, non-deterministic branching, and looping.
Standard if and while statements can be defined in the usual
way (i.e., if(e)s1 elses2

def
= (assumee;s1)8(assume !e;s2) and

while(e)s def
= loop(assumee;s);assume !e).

For ease of presentation, our formal language is intraprocedural.
However, our implementation is fully interprocedural. We handle
procedure calls by modeling parameter binding using assignment
and keeping an explicit abstraction of the call stack. The call stack
is initially empty representing an arbitrary calling context but grows
as we encounter call instructions during symbolic execution. If we
reach the entry block of a function with an empty call stack, we
propagate symbolic state backwards to all possible callers of the
current function. We determine the set of possible callers using the
call graph constructed alongside the points-to analysis.

3.1 Formulating a Witness Query over Heap Locations
Given a program, we first do a standard points-to analysis to obtain
a points-to graph G̊ : 〈V̊ , E̊〉 consisting of a set of vertices V̊ and a
set of edges E̊ (e.g., Figure 2). A vertex represents a set of mem-
ory addresses, which include program variables x ∈ Var and ab-
stract locations a ∈ AbsLoc (i.e., V̊ ⊇ Var∪AbsLoc). An abstract
location a abstracts non–program-variable locations (e.g., from dy-
namic memory allocation). We do not fix the heap abstraction, such

as the level of context sensitivity, but we do assume that we are
given the abstract location to which any new allocation belongs (via
the subscript annotation). A points-to edge from E̊ is either of the
form x Z⇒a or a0· f Z⇒a1. The form x Z⇒a means a concrete memory
address represented by the program variable x may contain a value
represented by abstract location a. We write a0· f Z⇒ a1 to denote
that f is the label for the edge between nodes a0 and a1. This edge
form means that a0· f is a field of an object in the concretization of
a0 that may contain a value represented by abstract location a1. A
static field in Java can be modeled as a global program variable.

Our analysis permits formulating a query Q over a finite number
of heap locations along with constraints over data fields:

queries Q ::= M∧P | false
memories M ::= any | x 7� v̂ | v̂· f 7� û |M1 N M2
pure formulæ P ::= true | P1 ∧P2 | v̂ from r̊ | · · ·
points-to regions r̊, s̊ ::= a | data | r̊1 d r̊2
instances v̂, û
refutation states R ::= Q | R1 ∨R2 | ∃v̂.R

We give a heap location via an exact points-to edge constraint
having one of two forms: x 7� v̂ or v̂· f 7� û. Recall that in contrast to
points-to edges that summarize a set of concrete memory cells, an
exact points-to constraint expresses a single memory cell. The first
form x 7� v̂ means a memory address represented by the program
variable x contains a value represented by a symbolic variable v̂
(and similarly for the second form for a field). Since we are mostly
concerned with memory addresses for concrete object instances,
we often refer to symbolic variables as instances. The memory any
stands for an arbitrary memory.

We introduce one non-standard pure constraint form: the in-
stance constraint v̂ from r̊ says the symbolic variable v̂ is an in-
stance of a points-to region r̊ (i.e., is in the set of values described
by region r̊). A points-to region is a set of abstract locations a or
the special region data. For uniformity, the region data is used to
represent the set of values that are not memory addresses, such as
integer values. As we have seen in Section 2.2, instance constraints
enable us to use information from the up-front points-to analysis in
our witness-refutation analysis. As an example, the informal query
arr0·contents 7�act0 from Section 2 is expressed as follows:

v̂1·contents[v̂3 ] 7� v̂2 ∧ v̂1 from {arr0}∧ v̂2 from {act0}∧ v̂3 from data

where v̂3 stands for the index of the array. This query considers
existentially an instance of each abstract location arr0 and act0.

When writing down queries, we assume the usual commutativ-
ity, associativity, and unit laws from separation logic [41]. Since
we are interested in witnessing or refuting a subset of edges cor-
responding to part of the memory, we interpret any memory M as
M N any (or intuitionistically instead of classically [32, 41]).

3.2 Witness-Refutation Search with Instance Constraints
As described in Section 2, we perform a path-program–by–path-
program, backwards symbolic analysis to find a witness for a given
query Q. A refutation state R is simply a disjunction of queries,
which we often view as a set of candidate witnesses. We include
an existential binding of instances ∃v̂.R to make explicit when
we introduce fresh instances, but we implicitly view instances as
renamed so that they are all bound at the top-level (i.e., all formulæ
are in prenex normal form). Informally, a path program witness is
a query Qwit bundled with a sub-program examined so far swit and
a sub-program left to be explored spre.

Definition 1 (Path Program Witness). A path program witness
for an input statement-query pair 〈s,Q〉 is a triple 〈spre,Qwit,swit〉
where (1) s≡ spre ;spost, and (2) swit is a sub-statement of spost such
that (a) if an execution of spost leads to a store σpost satisfying the
input query Q, then it must be from a store σwit satisfying Qwit and
(b) executing swit from σwit also leads to σpost.



` {R} s {Q} ` {R′ } s {R}

WITREFUTED

` { false} s { false}

WITCASES
` {R′1 } s {R1 } ` {R′2 } s {R2 }

` {R′1 ∨R′2 } s {R1 ∨R2 }

WITSKIP

` {any∧ true} s {any∧ true}

WITFRAME
` {

∨
i

M′i ∧P′i } s {M∧P} s must not modify Mfr

` {
∨

i

(Mfr NM′i )∧P′i } s {(Mfr NM)∧P}

` {R} c {Q}

WITNEW

` {any∧ v̂ from a∩ r̊ ∧P} x := newa τ() {x 7� v̂∧ v̂ from r̊∧P}

WITASSIGN

` {y 7� v̂∧ v̂ from ptG̊(y)∩ r̊ ∧P} x := y {x 7� v̂∧ v̂ from r̊∧P}

WITREAD

P′ = û from ptG̊(y)∧ v̂ from ptG̊(y. f )∩ r̊ ∧P

` {∃û.y 7� û N û· f 7� v̂∧P′ } x := y.f {x 7� v̂∧ v̂ from r̊∧P}

WITWRITE
Mi = x 7� v̂i N y 7� ûi N (N

j 6=i

v̂ j · f 7� û j ∧ v̂ j from r̊ j ∧ û j from s̊ j)

Qi = Mi ∧ v̂i from ptG̊(x)∩ r̊i ∧ ûi from ptG̊(y)∩ s̊i ∧ (
∧
j 6=i

v̂ j 6= v̂i)∧P

Q = ∃x̂.x 7� x̂ N (N
i

v̂i· f 7� ûi ∧ v̂i from r̊i ∧ ûi from s̊i ∧ v̂i 6= x̂)∧ x̂ from ptG̊(x)∧P

` {Q∨
∨

i

Qi } x.f := y {(N
i

v̂i· f 7� ûi ∧ v̂i from r̊i ∧ ûi from s̊i)∧P}

Figure 4. Witness-refutation search is a path-program–by–path-
program backwards analysis. Boxed terms emphasize opportunities
for refuting paths using instance constraints.

Any intermediate state in our backwards analysis is such a path
program witness. Intuitively, the statement swit captures the path
sub-program identified by the backwards analysis that is relevant
to producing the input query Q (so far). A refutation occurs when
Qwit is false, that is, we have discovered that it is not possible to
end up in a state satisfying Q. A “full” witness is when Qwit is any;
that is, we can no longer find a refutation. A “partial” witness is a
witness where Qwit is a query other than any or false.

We formalize a backwards path program enumeration trans-
forming queries into sub-queries to eventually produce an any or a
false refutation state. To describe the analysis, we define the judg-
ment form ` {R′ } s {R} in Figure 4. This judgment form is a
standard Hoare triple, but because our analysis is backwards, we
read this judgment form from right-to-left. It says, “Given a post-
formula R, we find a pre-formula R′ such that executing statement
s from a state satisfying R′ yields a state satisfying R (up to termi-
nation).” Conceptually, the post-formula R is a (disjunctive) set of
queries, and the pre-formula R′ is the set of sub-queries. The path
program swit can be obtained by a simple instrumentation of the
rules similar to our prior work [8].

Deriving Refutations. At any point, we can extend the witness-
refutation search for some disjunct. Here, we express this step
with WITCASES, which says a disjunctive refutation state R1 ∨R2
can be derived by finding a witness for R1 and R2. We make this
system algorithmic for an implementation by representing cases as
a disjunctive set of pending queries · · · ∨Qi ∨ ·· · that we extend
individually. Rule WITREFUTED simply says if we have derived
false in the post-state for a statement, then we have false in the
pre-state as well. To scale beyond the tiniest of programs, we need

to be able to refute queries quickly so that the number of queries
to consider, that is, the number of symbolic execution paths to
explore, remains small. We have three tools for refuting queries:
(1) separation (i.e., a query where a single memory cell would need
to point to two locations simultaneously), (2) instance constraints
(i.e., a query where an instance cannot be in any points-to region),
and (3) other pure constraints (i.e., a query with pure constraints
that are unsatisfiable, such as, from detecting an infeasible control-
flow path). In our inference rules, we assume a refutation state R is
always normalized to false if the formula is unsatisfiable. Since we
are interested in sound refutations and over-approximate witnesses,
for scaling, we can also weaken queries at the cost of potentially
losing precision. We revisit this notion in Section 3.3.

Instance constraints are pure constraints that tie the exact points-
to constraints in the query to the accumulated information from the
up-front points-to analysis and the flow of the symbolic variables
as discussed in Section 2.2. They can axiomatized as follows:

v̂ from /0 ⇐⇒ false (1)
v̂ from r̊1∧ v̂ from r̊2 ⇐⇒ v̂ from r̊1∩ r̊2 (2)

true ⇐⇒ v̂ from AbsLoc∪{data} (3)

In particular, we derive a contradiction when we discover an in-
stance that can be drawn from any abstract location (axiom 1).
Though our formalism groups instance constraints and other pure
constraints together, our implementation keeps them separate for
simplicity in checking. Instance constraints are checked using ba-
sic set operations and other pure constraints are checked with an
off-the-shelf SMT solver, though it should be possible to encode
instance constraints into the solver using this axiomatization.

We include a frame rule on M, WITFRAME, to simplify our
presentation, which together with WITSKIP allow us to isolate the
parts of the query that a block of code may affect and to ignore
irrelevant statements. In other words, any statements that cannot
affect the memory state in the query can be skipped. We can thus
focus our discussion on an auxiliary judgment form ` {R} c {Q}
that describes how the assignment commands affect a query and
its point-to and instance constraints. Informally, it says, “We can
witness a query Q after assignment command c by executing c if
we can also witness one of the sub-queries R before c.” From an
algorithmic perspective, we can view ` {R} c {Q} as generating
sub-queries that when combined with a frame may yield additional
contradictions. We assume this judgment implicitly has access to
the points-to graph G̊ : 〈V̊ , E̊〉 computed by the up-front analysis.
We use the ptG̊(·) function to get the points-to set of a program
variable via ptG̊(x)

def
= {a | (x Z⇒ a) ∈ E̊} or a field of a program

variable via ptG̊(y. f )
def
= {a j | ai ∈ ptG̊(y) and (ai·f Z⇒a j) ∈ E̊}.

Backwards Transfer Functions and Instance Constraints. Rule
WITNEW says that the exact points-to constraint x 7� v̂ can be wit-
nessed, or produced, by the allocation command x := newa τ() if
instance v̂ may have been created at allocation site a. Following
our axiomatization, the instance constraint v̂ from a∩ r̊ may imme-
diately reduce to false if a /∈ r̊. Or, we can drop it (without loss of
precision) because this instance cannot exist before its allocation at
this statement. Such a contradiction is precisely the reason for re-
futing the path at the new arr1 allocation (program point 16) in our
motivating example (Figure 1).

Now, consider rule WITASSIGN: it says that the exact points-
to constraint x 7� v̂ can be produced by the assignment command
x := y if y 7� v̂ can be witnessed before this assignment and the
instance v̂ can come from a region common to the points-to set
of y and the region r̊. If the points-to set of y and the region r̊ are
disjoint, we can derive a contradiction because the instance v̂ cannot
come from any allocation site. Observe that WITASSIGN leverages
the ‘from’ constraint and the up-front points-to analysis result
to eagerly discover that no allocation site satisfies the conditions



required for a witness (rather than observing that a particular
allocation site does not satisfy the conditions required for a witness,
as in WITNEW). To get a sense for why these eager refutations
are critical for scaling, consider the path refutation due to the
binding of val to "hello" at the objs.push call site (program
point 8). In our example, this refutation is via WITNEW because
"hello" is a String allocation, but we can easily imagine a
variant where objs.push is called with a program variable y that
can conservatively point-to a large set of non-Activity objects. For
such a program, WITASSIGN would allow us to discover a path
refutation at the assignment corresponding to the binding rather
than requiring us to continue exploration across the potentially
exponential number of paths to the allocation sites that flow to y.

The WITREAD rule is quite similar to WITASSIGN except that
we existentially quantify over the instance to which y points (i.e.,
û). We set up an initial points-to region constraint for the fresh
symbolic variable û based on the points-to set of y and narrow
the points-to region of v̂ using the points-to set of y. f . As in
WITASSIGN, we can derive a contradiction based on this narrowing
if the region r̊ and the points-to set of y. f are disjoint. Here, we
have taken some liberty with notation placing, for example, ‘from’
constraints under the iterated separating conjunctions; we recall
that N collapses to ∧ for pure constraints.

In the WITWRITE rule, the post-formula consists of two cases for
each edge v̂i· f 7� ûi in the pre-formula: (1) the field write x.f := y did
not produce the edge v̂i· f 7� ûi (the first disjunct Q), or (2) the field
write did produce the edge (the second set of disjuncts over all Qi).
If the write x.f := y did produce the points-to edge v̂i· f 7� ûi, then
the points-to regions of v̂i and ûi are restricted based on the points-
to sets of x and y, respectively. The “not produced” case represents
the possibility that this write updates an instance other than a v̂i (as
reflected by the x 7� x̂ and v̂i 6= x̂ conditions).

While WITWRITE can theoretically generate a huge case split,
we have observed that the combination of instance constraints and
separation typically allow us to find refutations quickly in practice
(see Section 4). In particular, the “not written” case can often be
immediately refuted by separation. For example, we end up with
a contradictory query where a local variable x has to point to two
different instances simultaneously (i.e., x 7� v̂ N x 7� û∧ v̂ 6= û).

Guards and Control Flow. Except for loops (see Section 3.3), the
remaining rules mostly relate to control flow and are quite standard
(shown inset). To discover a contradiction on pure constraints, we
state that the guard condition of an assume must hold in the pre-
query. We write e[M] for interpreting the program expression e in
the memory state M.

WITASSUME

` {M∧P∧ e[M]} assumee {M∧P}

WITSEQ
` {R′′ } s1 {R′ } ` {R′ } s2 {R}

` {R′′ } s1 ;s2 {R}

WITCHOICE
` {R1 } s1 {R} ` {R2 } s2 {R}
` {R1 ∨R2 } s1 8s2 {R}

The WITCHOICE rule analyzes
each branch independently. Our
implementation avoids path ex-
plosion due to irrelevant path
sensitivity by adding pure con-
straints from if-guards only when
the queries on each side of the
branch are different (as in previous
work [18, 39]), though our rules do
not express this.

3.3 Loop Invariant Inference and Query Simplification
In this section, we finish our description of witness-refutation
search by discussing our loop invariant inference scheme.

Roughly speaking, we infer loop invariants by repeatedly per-
forming backwards symbolic execution over the loop body until
we reach a fixed point over the domain of points-to constraints.
To ensure termination, we drop all pure constraints affected by the
loop body and fix a static bound on the number of instances of each
abstract location to materialize. In our experiments, a static bound

of one has been sufficient for precise results. The WITLOOP rule
(shown inset) simply states that if the loop body has no effect on
the query, the loop has no effect on it.

WITLOOP
` {R} s {R}

` {R} loops {R}

WITABSTRACTION
R′2 |= R′1 ` {R′2 } s {R2 } R1 |= R2

` {R′1 } s {R1 }

By itself, this rule only handles
the degenerate case where a loop can
be treated as skip with respect to
the query. For this case, the disjunc-
tive set of queries R is trivially a loop
invariant. For more interesting cases,
we use WITCASES to consider each
query in the refutation state individually so that we can infer an
over-approximate loop invariant for each one. Thus, we infer a loop
invariant on-the-fly for each path program rather than joining all
queries at the loop exit and then inferring an invariant for all back-
wards paths into the loop (similar to [35] but with heap constraints).

To preserve refutation soundness, we want to ensure that a con-
tradiction false is only derived when there does not exist a concrete
path witnessing the given query and thus must over-approximate
loops. A sound, backwards over-approximation can be obtained by
weakening the post-loop query Qi. Since an individual query is
purely conjunctive, we can weaken it quite easily by “dropping”
constraints (i.e., removing conjuncts). Intuitively, dropping con-
straints is refutation-sound because it can only make it more diffi-
cult to derive a contradiction. This over-approximation is captured
by the WITABSTRACTION rule. The rule says that at any program
point, we can drop constraints, and doing so preserves refutation
soundness (Theorem 1).

We write R1 |= R2 for the semantic entailment and correspond-
ingly rely on a sound decision procedure in our implementation
(used in WITABSTRACTION). Entailment between a finite separat-
ing conjunction exact points-to constraints can be resolved in a
standard way by subtraction [5]. Without inductive predicates, the
procedure is a straightforward matching. Entailment between the
‘from’ instance constraints can be defined as follows:

(v̂1 from r̊1) |= (v̂2 from r̊2) iff v̂1 = v̂2 and r̊1 ⊆ r̊2 (§)

As previously mentioned, ‘from’ constraints are represented as sets
associated with a symbolic variable and solved with ordinary set
operations. We discharge other pure constraints using an off-the-
shelf SMT solver, so precision of reasoning about those constraints
is with respect to the capabilities of the solver.

With these tools, our loop invariant inference is a rather straight-
forward fixed-point computation. For a loop statement loops and
a post-loop query Q, we iteratively apply the backwards predicate
transformer for the loop body s to saturate a set of sub-queries at the
loop head. Let R0 be some refutation state such that ` {R0 } s {Q},
and let Ri+1 = Ri ∨R′ where ` {R′ } s {Ri }. We ensure that the
chain of R0 |= R1 |= · · · converges by bounding the number of in-
stances or materializations from the abstract locations. Since there
are a finite number of abstract locations, the number of points-to
constraints in any particular query is bounded by the number of
edges in the points-to graph (i.e., |E̊|). For the base domain of pure
constraints, widening [14] can be used to ensure convergence. Our
implementation uses a trivial widening that drops pure constraints
that may be modified by the loop.

Query Simplification with Disaliasing. The WITABSTRACTION

rule captures backwards over-approximation by saying that at any
point, we can weaken a refutation state without losing refutation
soundness. Conceptually, we can weaken by replacing any sym-
bolic join ∨with an over-approximate join t. We perform one such
join by replacing the refutation state Q1 ∨Q2 with Q2 if Q1 |= Q2.
Note that this join does not lose precision. Intuitively, for a refu-
tation state R, we are interested in witnessing any query in R or
refuting all queries in R. Here, a refutation of query Q2 implies a
refutation of Q1, so we only need to consider Q2.



To enable this join to apply often, we enforce a normal form
for our queries by dropping certain kinds of constraints. As formal-
ized in Figure 4, the backwards transfer functions for assignment
commands c are as precise as possible, including the generation of
disequality constraints in WITWRITE. These disequality constraints
are needed locally to check for refutations due to separation, as de-
tailed in Section 3.2. However, if this check passes, we drop them
before proceeding and instead keep only the disaliasing informa-
tion implied by separation and the instance from constraints. While
this weakening could lose precision (e.g., if the backwards analy-
sis would later encounter an if-guard for the aliasing condition),
we hypothesize that this situation is rare and that the most useful
disaliasing information is captured by separation and instance con-
straints.

In our implementation, we are much closer to a path-by-path
analysis than our formalization would indicate. Refutation states
are represented as a worklist of pending (non-disjunctive) queries
to explore. To apply the simplification described above, we must
keep a history of queries seen at a given program point: if we have
previously seen a weaker query at this program point, then we can
drop the current query. We keep a query history only at procedure
boundaries and loop heads. This simplification has been especially
critical for procedures.

Soundness. We define a concrete store σ be a finite mapping
from variables or address-field pairs to concrete values (i.e., σ :
Var] (Addr×Field)⇀fin Val) and give a standard big-step oper-
ational semantics to our basic imperative language The judgment
form σ ` s ↓ σ ′ says, “In store σ , statement s evaluates to store
σ ′.” Furthermore, we write σ |= R to say that the store σ is in the
concretization of the refutation state R. The definition of σ |= R is
as would be expected in comparison to separation logic. We need
to utilize two other concrete semantic domains: a valuation η that
maps instances to values (i.e., η : Instance→ Val) and a regional-
ization ρ that maps abstract locations to sets of concrete addresses
(i.e., ρ : AbsLoc→ ℘(Addr)). The regionalization gives meaning
to the ‘from’ instance constraint. With these definitions, we pre-
cisely state the soundness theorem.

Theorem 1 (Refutation Soundness). If ` {Rpre } s {Rpost } and
σpre ` s ↓ σpost such that σpost |= Rpost, then σpre |= Rpre. As a
corollary, refutations (i.e., when Rpre is false) are sound.

Interestingly, the standard consequence rule from Hoare logic
states the opposite in comparison to WITABSTRACTION by permit-
ting the strengthening of queries. Doing so would instead preserve
witness precision; that is, any path program witness exhibits some
witness path (up to termination).

4. Case Study: Activity Leaks in Android
We evaluated our witness-refutation analysis by using it to find
Activity leaks, a common class of memory leaks in open-source
Android applications. We explain this client in more detail below.
Our experiments were designed to test two hypotheses. The first
and most important concerns the precision of our approach: we
hypothesized that witness-refutation analysis reports many fewer
false alarms than a flow-insensitive points-to analysis. We tried
using a flow-insensitive analysis to find leaks, but found that the
number of alarms reported was too large to examine manually. To
be useful, our technique needs to prune this number enough for
a user to effectively triage the results and identify real leaks. Our
second hypothesis concerns the utility of our techniques: we posited
that (1) our mixed symbolic-explicit is an improvement over both
a fully explicit and a fully symbolic representation, (2) our query
simplification significantly speeds up analysis, and (3) our on-the-

fly loop invariant inference is needed to preserve precision in the
presence of loops.

Client. Activity leaks occur when a pointer to an Activity object
can outlive the Activity. The operating system frequently destroys
Activity’s when configuration changes occur (e.g., rotating the
phone). Once an Activity is destroyed, it can never be displayed
to the user again and thus represents unused memory that should
be reclaimed by the garbage collector. However, if an application
developer maintains a pointer to an Activity after it is destroyed, the
garbage collector will be unable to reclaim it. In our experiments,
we check if any Activity instance is ever reachable from a static
field, a flow-insensitive property. Though a developer could safely
keep a reference to an Activity object via a static field that is
cleared each time the Activity is destroyed, this is recognized as
bad practice.

Activity leaking is a serious problem. It is well-documented
that keeping persistent references to Activity’s is bad practice; we
refer the reader to an article2 in the Android Developers Blog
as evidence. The true problem is that it is quite easy for devel-
opers to inadvertently keep persistent references to an Activity.
Sub-components of Activity’s (such as Adapter’s, Cursor’s, and
View’s) typically keep pointers to their parent Activity, meaning
that any persistent reference to an element in the Activity’s hierar-
chy can potentially create a leak.

Precision of Our Techniques: Threshing Alarms. We imple-
mented our witness-refutation analysis in the THRESHER tool,
which is publicly available.3 Additional details on our implemen-
tation are included at the end of this section. All of our experiments
were performed on a machine running Ubuntu 12.04.2 with a 2.93
GHz Intel Xeon processor and 32GB of memory. Though our anal-
ysis is quite amenable to parallelization in theory, our current im-
plementation is purely sequential.

To evaluate the precision of our approach, we computed a flow-
insensitive points-to graph for each application and the Android
library (version 2.3.3) using WALA’s 0-1-Container-CFA pointer
analysis (a variation of Andersen’s analysis with unlimited context
sensitivity for container classes). For each heap path from a static
field f to an Activity instance A in the points-to graph, we asked
THRESHER to witness or refute each edge in the path from source
to sink. If we refuted an edge in the heap path, we searched for a
new path. We repeated this until THRESHER either witnessed each
edge in the heap path (i.e., confirmed the flow-insensitive alarm) or
refuted enough edges to prove that no heap path from f to A can
exist (i.e., filtered out the leak report). We allowed an exploration
budget of 10,000 path programs for each edge; if the tool exceeded
the budget, we declared a timeout for that edge and considered it to
be not refuted. On paths with call stacks of depth greater than three,
we soundly skipped callees by dropping constraints that executing
the call might produce (according to a mod/ref analysis computed
alongside the points-to analysis). We limited the size of the path
constraint set to at most two. Allowing larger path constraint sets
slowed down the symbolic executor without increasing precision.
We ran in two configurations: one with the Android library as-is
(Ann?=N), and one where we added a single annotation to the
HashMap class to indicate that the shared EMPTY_TABLE field
can never point to anything (Ann?=Y). We did this because we
observed that the use of the null object pattern in the HashMap
class was a major source of imprecision for the flow-insensitive
analysis (cf. Figure 1), but we wanted to make sure that it was not
the only one our tool was able to handle.

2 http://developer.android.com/resources/articles/
avoiding-memory-leaks.html
3 https://github.com/cuplv/thresher
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Benchmark Size Filtering Effectiveness Computational Effort

Benchmark SLOC CGB Ann? Alrms RefA(%) TruA(%) FalA(%) Flds RefFlds RefEdg WitEdg TO T (s)

PulsePoint♠ no src 198K N 24 16 (67) 8 (33) 0 (0) 3 2 47 40 1 750
Y 16 8 (50) 8 (50) 0 (0) 2 1 40 31 0 95

StandupTimer♣ 2K 240K N 25 15 (60) 0 (0) 10 (40) 5 3 18 26 0 1199
Y 25 15 (60) 0 (0) 10 (40) 5 3 18 26 0 1068

DroidLife♠ 3K 132K N 3 0 (0) 3 (100) 0 (0) 1 0 0 4 0 1
Y 3 0 (0) 3 (100) 0 (0) 1 0 0 4 0 1

OpenSudoku 6K 229K N 7 1 (14) 0 (0) 6 (86) 1 0 2 21 1 1596
Y 0 0 (0) 0 (0) 0 (0) 0 0 0 0 0 0

SMSPopUp♠ 7K 232K N 5 1 (20) 4 (80) 0 (0) 1 0 10 24 0 49
Y 5 1 (20) 4 (80) 0 (0) 1 0 10 24 0 46

aMetro♠ 20K 326K N 144 18 (12) 36 (25) 90 (63) 8 1 62 66 3 4226
Y 54 18 (33) 36 (67) 0 (0) 3 1 55 24 0 18

K9Mail♠ 40K 394K N 364 78 (21) 64 (18) 222 (61) 14 3 141 106 1 1130
Y 208 130 (63) 64 (49) 14 (7) 8 5 124 80 0 374

Total 78K 1751K N 572 129 (22) 115 (20) 332 (58) 33 9 280 287 6 8991
Y 311 172 (55) 115 (37) 24 (8) 20 10 247 189 0 1602

Table 1. This table characterizes the size of our benchmarks, highlights our success in distinguishing false alarms from real leaks, and
quantifies the effort required to find refutations. ♠’s indicate a benchmark in which we found an observable leak, and ♣ indicates a latent
leak. The Size column grouping gives the number of source lines of code SLOC and the number of bytecodes in the call graph CGB for each
app as well as the annotation configuration Ann?=Y/N. The Filtering column grouping characterizes the effectiveness of our approach for
filtering false alarms. The first four columns list the number of (static field, Activity) alarm pairs reported by the points-to analysis Alarms,
number of alarms refuted by our approach RefA, number of true alarms TruA, and the number of false alarms FalA. The final two columns
of this group give the number of leaky fields reported by the points-to analysis Fields and the number of these fields RefFlds that we can
refute (i.e., prove that the field in question cannot point to any Activity). The Effort columns describe the amount of work required by our
filtering approach. We list the number of edges refuted RefEdg, edges witnessed WitEdg, edge timeouts TO, and the time T (s) taken by
the symbolic execution phase in seconds. This number does not include points-to analysis time, which ranged from 8–46 seconds on all
benchmarks.

Table 1 shows the results of this experiment. We first comment
on the most interesting part of the experiment: the filtering effec-
tiveness of our analysis. As we hoped, our analysis is able to refute
many of the false alarms produced by the flow-insensitive points-to
analysis. Overall, we refute 129/457 = 28% of these false alarms
in the un-annotated configuration and 172/196 = 87% of these false
alarms in the annotated configuration. Contrary to our expectations,
we found many more refutations in the Ann?=Y configuration,
confirming that our technique can indeed remedy imprecision other
than the pollution caused by HashMaps.

Unfortunately, this also means that our analysis is not always
able to remedy the imprecision caused by HashMaps. The major
problem is that the Ann?=N configuration fails to refute many
of the HashMap-related edges due to timeouts. In fact, most of
the false alarms that are not common to both configurations stem
from (soundly) not considering timed-out edges to be refuted. We
observed that a timeout commonly corresponds to a refutation that
the analysis was unable to find within the path program budget.
This is not surprising; finding a witness for an edge only requires
finding a single path program that produces the edge (which we can
usually do quickly), but to find a refutation we must refute all path
programs that might produce an edge (which is slow and sometimes
times out, potentially causing precision loss).

For example, the single timeout in the Ann?=N run of K9Mail
occurs on a HashMap-related edge that is refutable, but quite chal-
lenging to refute. As it turns out, refuting this edge is extremely
important for precision—upon further investigation, we discov-
ered that the analysis would have reduced the number of false
alarms reported by over 100 if it had been able to refute it! In
the Ann?=Y configuration, this edge disappears from the flow-
insensitive points-to graph. We can see that this increases the num-

public class EmailAddressAdapter extends ResourceCursorAdapter {
private static EmailAddressAdapter sInstance;
public static EmailAddressAdapter getInstance(Context context) {

if (sInstance == null)
sInstance = newadr0 EmailAddressAdapter(context);

return sInstance;
}
private EmailAddressAdapter(Context context) { super(context); }

}

Figure 5. A confirmed Activity leak discovered in K9Mail.

ber of alarms we are able refute from 78 to 130 even though the
number of alarms reported by the flow-insensitive points-to analy-
sis falls from 364 to 208.

We now comment on the computational effort required to re-
fute/witness edges. We first observe that the number of edges re-
futed is almost always greater then the number of alarms refuted,
indicating that it is frequently necessary to refute several edges in
order to refute a single (source, sink) alarm pair. For example, in the
un-annotated run of aMetro, we refute 62 edges in order to refute 18
alarms. This demonstrates that the flow-insensitive points-to analy-
sis is imprecise enough to find many different ways to produce the
same false alarm.

We note that the running times are quite reasonable for an anal-
ysis at this level of precision, especially in the annotated configura-
tion. No benchmark other than aMetro takes more than a half hour.
Our tool would be fast enough to be used in a heavyweight cloud
service or as part of an overnight build process.



Real Activity Leaks. As hypothesized, our tool’s precision en-
abled us to ignore most false alarms and focus on likely leaks. We
found genuine leaks in PulsePoint, DroidLife, SMSPopUp, aMetro,
and K9Mail. Many of the leaks we found would only manifest un-
der specialized and complex circumstances, but a few of the nasti-
est leaks we found would almost always manifest and are due to the
same simple problem: an inappropriate use of the singleton pattern.
We briefly explain one such leak from the K9Mail app.

In the code in Figure 5, the developer uses the singleton pattern
to ensure that only one instance of EmailAddressAdapter is ever
created. The leak arises when getInstance() is called with an
Activity instance passed as the context parameter (which hap-
pens in several places in K9Mail). The Activity instance is passed
backwards through the constructors of two superclasses via the
context parameter until it is finally stored in the mContext in-
stance field of the CursorAdapter superclass. For every Activity
act0 that calls getInstance(), the flow-insensitive points-to
analysis reports a heap path EmailAddressAdapter·sInstance Z⇒
adr0,adr0·mContext Z⇒ act0. When the Activity instance is de-
stroyed, the garbage collector will never be able to reclaim it be-
cause none of the pointers involved in the leak are ever cleared.

We found this leak in a version of K9Mail that was downloaded
in September 2011 (all versions of the benchmarks we used are
available in project’s GitHub repository). We looked at the current
version and noticed that the EmailAddressAdapter class had been
refactored to remove the singleton pattern. We found the commit
that performed this refactoring and asked the developers of K9Mail
if the purpose of this commit was to address a leak issue; they
confirmed that it was.4

We also discovered a very simple latent leak in StandupTimer
that was also due to a bad use of the singleton pattern. We noticed
that several of the path programs THRESHER produced for a field
in this app would be a full witness for a leak if a single boolean flag
cacheDAOInstances were enabled. Our tool correctly recognizes
that this flag cannot ever be set and refutes the alarm report, but
a modification to the program that enabled this flag would result
in a leak. The path program witnesses our tool produces are al-
ways helpful in triaging reported leak alarms, but in this case even
the refuted path program witness provided useful information that
allowed us to identify an almost-leak. With a less constructive refu-
tation technique, we might have missed this detail.

Utility of Our Techniques. To test our second set of hypotheses,
we ran THRESHER on the benchmarks from Table 1 without using
each of three key features of our analysis: mixed symbolic-explicit
query representation, query simplification, and loop invariant infer-
ence. We hypothesized that: (1) using an alternative query represen-
tation would negatively affect scalability and/or performance, (2)
not simplifying queries would negatively affect scalability and/or
performance, and (3) the absence of loop invariant inference would
negatively affect precision.

To test hypothesis (1), we implemented a fully symbolic query
representation. In a fully symbolic representation, we do not track
the set of allocation sites that a variable might belong to. We
have up-front points-to information, but use it only to confirm that
two symbolic variables are not equal (i.e., to prevent aliasing case
splits in the style of [39]) and to confirm that a symbolic variable
was allocated at a given site (as in WITNEW). This precludes both
pruning paths based on the boxed ‘from’ constraints in Figure 4
and performing the entailment check between symbolic variables
defined in Equation § in Section 3.3.

Using this fully symbolic representation, our analysis ran slower
and timed out more often, but did not refute any fewer alarms

4 https://groups.google.com/forum/?fromgroups=#!topic/
k-9-mail/JhoXL2c4UfU

Benchmark Ann? T (slowdown) TO (∆)

PulsePoint N 1237 (1.6X) 7 (+6)
Y 220 (1.9X) 3 (+3)

StandupTimer N 4946 (4.1X) 4 (+4)
Y 4104 (3.8X) 4 (+4)

OpenSudoku N 2984 (1.9X) 4 (+3)
Y - -

SMSPopUp N 95 (1.9X) 0 (+0)
Y 76 (1.7X) 0 (+0)

aMetro N 6863 (1.6X) 5 (+2)
Y 18 (1X) 0 (+0)

K9Mail N 990 (0.9X) 2 (+1)
Y 454 (1.2X) 0 (+0)

Table 2. Performance of the fully symbolic representation as com-
pared to the mixed symbolic-explicit representation.

than the run with the mixed representation. We observed several
cases where a timeout caused the fully symbolic representation to
miss refuting an edge that the mixed representation was able to
refute, but in each case the edge turned out not to be important
for precision (that is, it was one of many edges that needed to be
refuted in order to refute an alarm, but both representations failed
to refute all of these edges).

The results of this experiment are shown in Table 2. We omit the
results for DroidLife since they were unaffected by the choice of
representation. For every other benchmark, we give the time taken
with a fully symbolic representation, the number of times slower
than the mixed representation this was (T (slowdown)), the number
of edges that timed out, and how many timeouts were added over
the mixed representation (TO (∆)).

We can see that in both the annotated and un-annotated config-
urations, most benchmarks run at least 1.6X slower and time out
on at least one more edge than they did with the mixed representa-
tion. The anomalous behavior of K9Mail in the un-annotated con-
figuration occurs because the mixed representation is able to refute
an edge that the fully symbolic representation times out on. Ulti-
mately, this leads the mixed representation to make more progress
towards (but ultimately fail in) refuting a particular alarm. The fully
symbolic representation declares this particular alarm witnessed af-
ter the edge in question times out, which allows it to skip this effort
and finish faster. Thus, hypothesis (1) seems to hold: using a fully
symbolic representation negatively affected both performance and
scalability as predicted, but choosing a fully symbolic representa-
tion did not ultimately affect the precision of the analysis in terms
of alarms filtered.

To test hypothesis (2), we re-ran THRESHER on our benchmarks
using the annotated Android library without performing any query
simplification at all. This significantly hurt the performance of
THRESHER on PulsePoint (102.4X slower), K9Mail (3.2X slower),
and SMSPopUp (4.3X slower), but did not change the number of
alarms refuted or witnessed for these benchmarks. On StandupTi-
mer, not performing simplification caused the tool to run out of
memory before completing the analysis, thus affecting both preci-
sion and performance. The performance of the tool on other apps
was not significantly affected. Thus, hypothesis (2) seems to hold
for the benchmarks that require significant computational effort.

Finally, to test hypothesis (3), we implemented a simple loop in-
variant inference that simply drops all possibly-affected constraints
at any loop. With only this simple inference, the analysis was un-
able to refute some critical HashMap-related edges (using the un-
annotated library). This meant that the analysis could never distin-
guish the contents of different HashMap objects. This imprecision

https://groups.google.com/forum/?fromgroups=#!topic/k-9-mail/JhoXL2c4UfU
https://groups.google.com/forum/?fromgroups=#!topic/k-9-mail/JhoXL2c4UfU


prevented the analysis from refuting leak reports involving multiple
HashMap’s even on small, hand-written test cases. Our full loop in-
variant inference (Section 3.3) handled the hand-written cases pre-
cisely, but due to unrelated analysis limitations, it did not achieve
any fewer overall refutations on our real benchmarks. Nevertheless,
our testing confirmed hypothesis (3): our loop invariant inference
was clearly necessary to properly handle Android HashMap’s and
similar data structures.

Implementation. THRESHER is built on top of the on the WALA
program analysis framework for Java and uses the Z3 [19] SMT
solver with JVM support via ScalaZ3 [34] to determine when path
constraints are unsatisfiable. Like most static analysis tools that
handle real-world programs, our tool has a few known sources of
unsoundness. We do not reason about reflection or handle con-
currency. We have source code for most (but not all) non-native
Java library methods. In particular, the Android library custom
implementations of core Java library classes (including collec-
tions) that we analyze. To focus our reasoning on Android library
and application code, we exclude classes from Apache libraries,
java/nio/Charset, and java/util/concurrent from the call
graph. Though we track control flow due to thrown exceptions,
we do not handle the catch() construct; instead, we assume that
thrown exceptions are never caught.

Android apps are event-driven and (in general) Android event
handlers can be called any number of times and in (almost) any
order. We use a top-level harness that invokes every event handler
defined for an application. Our harness allows event handlers to be
invoked in any order, but insists that each handler is called only
once in order to prevent termination issues. In our experiments, we
did not observe any unsound refutations due to these limitations.

We do not do any modeling for special Android components
such as Intent’s and BroadcastReceiver’s. Since most special com-
ponents are used for communication between applications that run
in separate memory spaces, we would not expect THRESHER to
miss any memory leaks due to this modeling issue.

5. Related Work
Dillig et al. present precise heap analyses for programs manipulat-
ing arrays and containers [21, 22], with path and context sensitiv-
ity [20]. Our analysis introduces path and context sensitivity via
on-demand refinement, in contrast to their exhaustive, summary-
based approach. Our symbolic variables are similar to their index
variables [21, 22] in that both symbolically represent concrete loca-
tions and enable lazy case splits. Unlike index variables, our sym-
bolic variables do not distinguish specific array indices or loop it-
erations, since this was not required for our memory leak client.
Also, our analysis does not require container specifications [22]; in-
stead, we analyze container implementations directly. Hackett and
Aiken [29] present a points-to analysis with intra-procedural path
sensitivity, which is insufficient for our needs.

Several previous systems focused on performing effective back-
ward symbolic analysis. The pioneering ESC/Java system [27] per-
formed intra-procedural backward analysis, generating a polyno-
mially-sized verification condition and checking its validity with a
theorem prover. Snugglebug [11] performed inter-procedural back-
ward symbolic analysis, employing directed call graph construction
and custom simplifiers to improve scalability. Cousot et al. [17]
present backward symbolic analysis as one of a suite of techniques
for transforming intermittent assertions in a method into executable
pre-condition checks. PSE [39] used backward symbolic analysis to
help explain program failures, but for greater scalability, it did not
represent full path conditions. Our work is distinguished from these
previous systems by the integration of points-to analysis informa-

tion, which enables key optimizations like mixed symbolic-explicit
states and abstraction for loop handling.

Our analysis can be seen as refining the initial flow-insensitive
abstraction of the points-to analysis based on a “counterexam-
ple” reachability query deemed feasible by that analysis. How-
ever, instead of gradually refining this abstraction as in, for exam-
ple, counterexample-based abstraction refinement (CEGAR) [13]
and related techniques [16] , our technique immediately employs
concrete reasoning about the program, and then re-introduces ab-
straction as needed (e.g., to handle loops). In general, the above
predicate-abstraction-based approaches have not been shown to
work well for proving properties of object-oriented programs,
which present additional challenges due to intensive heap usage,
frequent virtual dispatch, etc. Architecturally, our system is more
similar to recent staged analyses for typestate verification [25, 26],
but our system employs greater path sensitivity and more deeply
integrates points-to facts from the initial analysis stage. A path
program [7] was originally defined in the context of improving CE-
GAR by pruning multiple counterexample traces through a loop
at once. SMPP [30] performs SMT-based verification by exhaus-
tively enumerating path programs in a forward-chaining manner (in
contrast to our goal-directed search). The recent DASH system [4]
refines its abstraction based on information from dynamic runs and
employs dynamic information to reduce explosion due to aliasing.

Our witness-refutation search uses the “bounded” fragment of
separation logic [41] and thus has a peripheral connection to recent
separation-logic–based shape analyzers [6, 12]. In contrast to such
analyzers, we do not use inductive summaries and instead use
materializations from a static points-to analysis abstraction. Shape
analysis using bi-abductive inference [10] enables a compositional
analysis by deriving pre- and post-conditions for methods in a
bottom-up manner and making a best effort to reach top-level entry
points. The derivation of heap pre-conditions is somewhat similar
to our witness-refutation search over points-to constraints, but our
backwards analysis is applied on demand from a flow-insensitive
query and is refined by incorporating information from an up-front,
whole program points-to analysis. Recent work [24] has applied bi-
abduction to detect real Java memory leaks in the sense of an object
that is allocated but never used again. In contrast, our client is a
flow-insensitive heap reachability property that over-approximates
a leak that is not explicit in the code, but is realized in the Android
run-time.

Similar to our path program witnesses, other techniques have
aimed to either produce a concrete path witness for some program
error or help the user to discover one. Bourdoncle [9] presents a
system for “abstract debugging” of program assertions, in which
the compiler aims to discover inputs leading to violations statically.
Rival [42] presents a system based on combined forward and back-
ward analysis for elucidating and validating error reports from the
Astrée system [15]. Work by Ball et al. [3] observes that for show-
ing the existence of program errors (as opposed to verifying their
absence), a non-standard notion of abstraction suffices in which one
only requires the existence of a concrete state satisfying any partic-
ular property of the corresponding abstract state (as opposed to all
corresponding concrete states satisfying the property). We observe
an analogous difference between refutation and witness discovery
in Section 3. Similar notions underlie the “proof obligation queries”
and “failure witness queries” in recent work on error diagnosis [23].

Previous points-to analyses have included refinement to im-
prove precision. Guyer and Lin’s client-driven pointer analysis [28]
introduced context and flow sensitivity at possibly-polluting pro-
gram points based on client needs. Sridharan and Bodik [44] pre-
sented an approach for adding field and context sensitivity to a Java
points-to analysis via refinement. Recently, Liang et al. [36–38]
have shown that highly-targeted refinements of a heap abstraction



can yield sufficient precision for certain clients. Unlike our work,
none of the aforementioned techniques can introduce path sensi-
tivity via refinement. A recent study on Andersen’s analysis [8]
used dependency rules akin to a fully-explicit analog of our mixed
symbolic-explicit transfer functions in a flow-insensitive context.

6. Conclusion
We have presented THRESHER, a precise static analysis for rea-
soning about heap reachability with flow-, context-, and path-
sensitivity and location materialization. THRESHER introduces
such precision in an on-demand manner after running a flow-
insensitive points-to analysis. By integrating flow-insensitive points-
to facts directly into a mixed symbolic-explicit representation of
the program state and computing sufficiently strong loop invariants
automatically, our techniques scale well while maintaining good
precision. In our evaluation, we applied THRESHER to the prob-
lem of detecting an important class of Android memory leaks and
discovered real leaks while significantly improving precision over
points-to analysis alone.
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and X. Rival. The ASTREÉ analyzer. In ESOP, 2005.

[16] P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction
refinements. In SAS, 2007.

[17] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from
intermittent assertions and application to contracts on collections. In
VMCAI, 2011.

[18] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program
verification in polynomial time. In PLDI, 2002.

[19] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, 2008.

[20] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-
sensitive analysis. In PLDI, 2008.

[21] I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs.
weak updates. In ESOP, 2010.

[22] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using
containers. In POPL, 2011.

[23] I. Dillig, T. Dillig, and A. Aiken. Automated error diagnosis using
abductive inference. In PLDI, 2012.
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