DejaVu: Deterministic Java Replay Debugger for
Jalapefo Java Virtual Machine

Bowen Alpern
IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
alpern@watson.ibm.com

Ton Ngo
IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heig_hts, NY 10598
ton@us.ibm.com

ABSTRACT

The execution behavior of a Java application can be non-
deterministic due to multithreading. This non-determinism
makes understanding and debugging multithreaded Java ap-
plications a difficult and laborious process. DejaVu (Deter-
ministic Java Replay Utility) helps the user in understand-
ing and debugging non-deterministic Java applications by
deterministically replaying the execution behavior of a non-
deterministic execution. In this demo, we will present a de-
bugger for the Jalapefio Java Virtual Machine that utilizes
the replay capability provided by DejaVu. The debugger
helps in isolating non-deterministic failure(s) by faithfully
reproducing the same execution behavior that led to the
observed failure(s). Jalapeno is a JVM being developed at
IBM T. J. Watson Research Center. The debugger provides
the following features: (1) DejaVu deterministically replays
Java programs; (2) Remote Reflection supports general de-
bugging functionalities such as setting breakpoints, examin-
ing the program state, and detecting deadlocks; and (3) a
GUI provides an intuitive and easy to use interface.

1. INTRODUCTION

Servers differ markedly from client applications in several
respects. Servers are usually longer-running, more highly
threaded, and have greater scalability concerns. Servers
must respond to requests quickly, often within explicit time
limits, even though the number of clients and requests may
be impossible to predict. These properties conspire to make
server programming difficult.

Several features of Java make it attractive for server de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA 2000 Companion Minneapolis, Minnesota

Copyright 2000 ACM 1-58113-307-3/00/10 ..$5.00

Jong-Deok Choi
IBM T.J. Watson Research Center
P.O. Box 704

. Yorktown Heights, NY 10598
jdchoi@watson.ibm.com

Manu Sridharan
Dept. of Electrical Engineering and Computer Science
MIT

Cambridge, MA 02139
msridhar@mit.edu

velopment, including garbage collection and a simple but
effective threading model. Yet server development remains
troublesome because of the challenges of debugging mul-
tithreaded code in general and server code in particular.
Servers are difficult to implement correctly because of the
sheer scale of multithreading compared to client applica-
tions. For instance, the average GUI employs just a few
threads, while a server can spawn dozens under even moder-
ate load. Add to this the comparatively low observability of
server behavior versus a GUI, plus the nondeterminism that
usually comes with multithreading, and the debugging task
becomes daunting. Nondeterminism is arguably the most
challenging problem because it is difficult to even repeat the
failure to debug.

We present the integration of several components devel-
oped at the IBM T. J. Research Center: the Jalapeno Java
Virtual Machine, the DejaVu deterministic replay, and Re-
mote Reflection for perturbation-free debugging. The result
is a powerful platform for both developing multithreaded
programs such as server applications and delivering the per-
formance they require. The debugger includes a GUI based
on Java Swing and provides both low level and high level
symbolic debugging.

2. Jalapefio JAVA VIRTUAL MACHINE

At the foundation of this platform is Jalapefio [2, 1], a
compile-only Java Virtual Machine (JVM) for high perfor-
mance servers. Written in Java, Jalapeno brings the benefits
of the Java object model to server design and implementa-
tion without sacrificing performance. Blurring the bound-
ary between application code and runtime services leads to
several advantages. First, application code can call runtime
methods directly without any overhead to adapt to the stack
and calling conventions of a different language. Secondly,
Jalapeno optimizing compiler is free to inline runtime ser-
vices directly into application methods. Such inlining elimi-
nates a method call overhead and may expose opportunities
for further optimization. Finally, the same dynamic opti-
mizations that the optimizing compiler applies to applica-

tion code can be applied to the optimizing compiler itself.

3. DEJAVU

DejaVu [3, 4] offers a solution to the problem of debugging
in the face of nondeterminism. It provides deterministic re-
play of a nondeterministic execution sequence, allowing a
program to be reexecuted repeatably. Thus a bug may be
isolated quickly, and its causes and effects observed reliably,
without disappearing in one or more executions due to non-
determinism.

DejaVu runs in two modes: the Record mode captures key
information for replay, while the Replay mode deterministi-
cally replays execution using the captured information. Be-
cause the current version runs on a uniprocessor where only
one thread can run at a time, preserving execution order
is a matter of capturing thread scheduling information dur-
ing recording and enforcing the same thread schedule during
replay.

Jalapeno employs a quasi-preemptive thread scheduling
driven by yield-points inserted by the compiler and timer in-
terrupt. DejaVu in Jalapefo utilizes this quasi-preemptive
thread scheduling to efficiently capture and replay thread
scheduling. For events that are not reproducible, such as
reading a wall-clock value or keyboard inputs, DejaVu cap-
tures their values during record mode and reuses them dur-
ing replay mode.

4. REMOTE REFLECTION

A debugger integrated with DejaVu must be able to start
and stop both the application and the JVM as they replay
their execution deterministically. In addition, the debug-
ger must provide the usual debugging functions such as
querying objects and program state, setting breakpoints,
etc. Jalapeno provides an extensive reflection interface so
that the system components can be integrated seamlessly
and effectively. As a result, it is desirable for a debugger to
exploit the same reflection interface instead of using a differ-
ent ad hoc interface. Unfortunately, this approach leads to
conflicting requirements between DejaVu and the debugger:
running the debugger within Jalapefio would alter the sys-
tem state and perturb the deterministic replay, yet running
outside Jalapefio would prevent the debugger from using the
Jalapeno internal reflection interface.

Remote reflection [5] solves this problem by allowing a
program in a JVM, e.g. a debugger, to execute a reflec-
tion method that operates directly on an object residing in
another JVM, e.g Jalapeno and the application being re-
played. The key to remote reflection is a proxy object in the
local JVM called the Remote Object which represents the
real object in the remote JVM.

5. STATUS

We have completed an initial integrated system that in-
cludes all the components above. With this system, we
have been able to record and replay PBob, a significant
Java benchmark with a 20 minutes execution. During re-
play, the debugger can stop the program at arbitrary points
to inspect the entire system, including the application and
Jalapeno itself.

6. REFERENCES

[1] Bowen Alpern, Dick Attanasio, John J. Barton,
Michael G. Burke, Perry Cheng, Jong-Deok Choi,
Anthony Cocchi, Stephen Fink, David Grove, Michael
Hind, Susan Flynn Hummel, Derek Lieber, Vassily
Litvinov, Ton Ngo, Mark Mergen, Vivek Sarkar,
Mauricio J. Serrano, Janice Shepherd, Stephen Smith,
V. C. Sreedhar, Harini Srinivasan, and John Whaley.
The Jalapeno Virtual Machine. IBM Systems Journal,
39(1), pages 211-238, 2000.

[2] Bowen Alpern, Dick Attanasio, John J. Barton,
Anthony Cocchi, Susan Flynn Hummel, Derek Lieber,
Ton Ngo, Mark Mergen, Janice Shepherd, and Stephen
Smith. Implementing Jalapefio in Java. ACM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA), pages 314-324, November 1999.

[3] Jong-Deok Choi and Harini Srinivasan. Deterministic
Replay of Java Multithreaded Applications. ACM
SIGMETRICS Symposium on Parallel and Distributed
Tools, pages 48-59, August 1998.

[4] Ravi Konuru, Harini Srinivasan, and Jong-Deok Choi.
Deterministic Replay of Distributed Java Applications.
14th International Parallel & Distributed Processing
Symposium, pages 219-228, May 2000.

[5] Ton Ngo and John Barton. Debugging by Remote
Reflection. European Conference on Parallel
Computing, August 2000.

